Search Results for ""
161 - 170 of 1440 for Catalans ConstantSearch Results

Given a positive integer m>1, let its prime factorization be written m=p_1^(a_1)p_2^(a_2)p_3^(a_3)...p_k^(a_k). (1) Define the functions h(n) and H(n) by h(1)=1, H(1)=1, and ...
A double integral is a two-fold multiple integral. Examples of definite double integrals evaluating to simple constants include int_0^1int_0^1(dxdy)/(1-x^2y^2) = 1/8pi^2 (1) ...
Ahmed's integral is the definite integral int_0^1(tan^(-1)(sqrt(x^2+2)))/(sqrt(x^2+2)(x^2+1))dx=5/(96)pi^2 (OEIS A096615; Ahmed 2002; Borwein et al. 2004, pp. 17-20). This is ...
The sum of reciprocal multifactorials can be given in closed form by the beautiful formula m(n) = sum_(n=0)^(infty)1/(n!...!_()_(k)) (1) = ...
Let a piecewise smooth function f with only finitely many discontinuities (which are all jumps) be defined on [-pi,pi] with Fourier series a_k = 1/piint_(-pi)^pif(t)cos(kt)dt ...
Closed forms are known for the sums of reciprocals of even-indexed Lucas numbers P_L^((e)) = sum_(n=1)^(infty)1/(L_(2n)) (1) = sum_(n=1)^(infty)1/(phi^(2n)+phi^(-2n)) (2) = ...
Let Pi be a permutation of n elements, and let alpha_i be the number of permutation cycles of length i in this permutation. Picking Pi at random, it turns out that ...
Prellberg (2001) noted that the limit c=lim_(n->infty)(T_n)/(B_nexp{1/2[W(n)]^2})=2.2394331040... (OEIS A143307) exists, where T_n is a Takeuchi number, B_n is a Bell number, ...
Let S(x) denote the number of positive integers not exceeding x which can be expressed as a sum of two squares (i.e., those n<=x such that the sum of squares function ...
Consider decomposition the factorial n! into multiplicative factors p_k^(b_k) arranged in nondecreasing order. For example, 4! = 3·2^3 (1) = 2·3·4 (2) = 2·2·2·3 (3) and 5! = ...

...