TOPICS
Search

Search Results for ""


61 - 70 of 355 for Bessels InequalitySearch Results
Given T an unbiased estimator of theta so that <T>=theta. Then var(T)>=1/(Nint_(-infty)^infty[(partial(lnf))/(partialtheta)]^2fdx), where var is the variance.
For positive numbers a and b with a!=b, (a+b)/2>(b-a)/(lnb-lna)>sqrt(ab).
Relates invariants of a curve defined over the integers. If this inequality were proven true, then Fermat's last theorem would follow for sufficiently large exponents. ...
A balanced incomplete block design (v, k, lambda, r, b) exists only for b>=v (or, equivalently, r>=k).
Let y_n be a complex number for 1<=n<=N and let y_n=0 if n<1 or n>N. Then (Montgomery 2001).
Let E be the largest and e the smallest power of l in the HOMFLY polynomial of an oriented link, and i be the braid index. Then the Morton-Franks-Williams inequality holds, ...
For R[z]>0, where J_nu(z) is a Bessel function of the first kind.
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
If a function has a Fourier series given by f(x)=1/2a_0+sum_(n=1)^inftya_ncos(nx)+sum_(n=1)^inftyb_nsin(nx), (1) then Bessel's inequality becomes an equality known as ...
where R[nu]>-1, |argp|<pi/4, and a, b>0, J_nu(z) is a Bessel function of the first kind, and I_nu(z) is a modified Bessel function of the first kind.
1 ... 4|5|6|7|8|9|10 ... 36 Previous Next

...