TOPICS
Search

Search Results for ""


31 - 40 of 355 for Bessels InequalitySearch Results
Let f_1(x), ..., f_n(x) be real integrable functions over the closed interval [a,b], then the determinant of their integrals satisfies
Let A=a_(ik) be an arbitrary n×n nonsingular matrix with real elements and determinant |A|, then |A|^2<=product_(i=1)^n(sum_(k=1)^na_(ik)^2).
Let V be an inner product space and let x,y,z in V. Hlawka's inequality states that ||x+y||+||y+z||+||z+x||<=||x||+||y||+||z||+||x+y+z||, where the norm ||z|| denotes the ...
Let a plane figure have area A and perimeter p. Then Q=(4piA)/(p^2)<=1, where Q is known as the isoperimetric quotient. The equation becomes an equality only for a circle.
Given a convex plane region with area A and perimeter p, then |N-A|<p, where N is the number of enclosed lattice points.
If f(x) is a monotonically increasing integrable function on [a,b] with f(b)<=0, then if g is a real function integrable on [a,b], ...
Let f(x) be a nonnegative and monotonic decreasing function in [a,b] and g(x) such that 0<=g(x)<=1 in [a,b], then int_(b-k)^bf(x)dx<=int_a^bf(x)g(x)dx<=int_a^(a+k)f(x)dx, ...
Taylor's inequality is an estimate result for the value of the remainder term R_n(x) in any n-term finite Taylor series approximation. Indeed, if f is any function which ...
A triangle with side lengths a, b, and c and triangle area Delta satisfies a^2+b^2+c^2>=4sqrt(3)Delta. Equality holds iff the triangle is equilateral.
Let {a_n} be a nonnegative sequence and f(x) a nonnegative integrable function. Define A_n=sum_(k=1)^na_k (1) and F(x)=int_0^xf(t)dt (2) and take p>1. For sums, ...
1|2|3|4|5|6|7 ... 36 Previous Next

...