TOPICS
Search

Search Results for ""


1 - 10 of 355 for Bessels InequalitySearch Results
A mathematical statement that one quantity is greater than or less than another. "a is less than b" is denoted a<b, and "a is greater than b" is denoted a>b. "a is less than ...
Suppose x_1<x_2<...<x_n are given positive numbers. Let lambda_1, ..., lambda_n>=0 and sum_(j=1)^(n)lambda_j=1. Then ...
Let psi_1(x) and psi_2(x) be any two real integrable functions in [a,b], then Schwarz's inequality is given by |<psi_1|psi_2>|^2<=<psi_1|psi_1><psi_2|psi_2>. (1) Written out ...
If f(x) is piecewise continuous and has a generalized Fourier series sum_(i)a_iphi_i(x) (1) with weighting function w(x), it must be true that ...
Let Omega be an open, bounded, and connected subset of R^d for some d and let dx denote d-dimensional Lebesgue measure on R^d. In functional analysis, the Poincaré inequality ...
Let D=D(z_0,R) be an open disk, and let u be a harmonic function on D such that u(z)>=0 for all z in D. Then for all z in D, we have 0<=u(z)<=(R/(R-|z-z_0|))^2u(z_0).
Given a positive sequence {a_n}, sqrt(sum_(j=-infty)^infty|sum_(n=-infty; n!=j)^infty(a_n)/(j-n)|^2)<=pisqrt(sum_(n=-infty)^infty|a_n|^2), (1) where the a_ns are real and ...
Given a convex plane region with area A and perimeter p, A-1/2p<N<=A+1/2p+1, where N is the number of enclosed lattice points (Nosarzewska 1948). This improves on Jarnick's ...
For a quadrilateral which is not cyclic, Ptolemy's theorem becomes an inequality: AB×CD+BC×DA>AC×BD. The Ptolemy inequality is still valid when ABCD is a triangular pyramid ...
A special case of Hölder's sum inequality with p=q=2, (sum_(k=1)^na_kb_k)^2<=(sum_(k=1)^na_k^2)(sum_(k=1)^nb_k^2), (1) where equality holds for a_k=cb_k. The inequality is ...
1|2|3|4 ... 36 Next

...