Search Results for ""
521 - 530 of 3359 for Bessel FunctionSearch Results
A generalized Fourier series is a series expansion of a function based on the special properties of a complete orthogonal system of functions. The prototypical example of ...
Relations in the definition of a Steenrod algebra which state that, for i<2j, Sq^i degreesSq^j(x)=sum_(k=0)^(|_i/2_|)(j-k-1; i-2k)Sq^(i+j-k) degreesSq^k(x), where f degreesg ...
Let B_n(r) be the n-dimensional closed ball of radius r>1 centered at the origin. A function which is defined on B(r) is called an extension to B(r) of a function f defined ...
The most common "sine integral" is defined as Si(z)=int_0^z(sint)/tdt (1) Si(z) is the function implemented in the Wolfram Language as the function SinIntegral[z]. Si(z) is ...
(1) for p in [0,1], where delta is the central difference and E_(2n) = G_(2n)-G_(2n+1) (2) = B_(2n)-B_(2n+1) (3) F_(2n) = G_(2n+1) (4) = B_(2n)+B_(2n+1), (5) where G_k are ...
Kummer's first formula is (1) where _2F_1(a,b;c;z) is the hypergeometric function with m!=-1/2, -1, -3/2, ..., and Gamma(z) is the gamma function. The identity can be written ...
There are a number of equations known as the Riccati differential equation. The most common is z^2w^('')+[z^2-n(n+1)]w=0 (1) (Abramowitz and Stegun 1972, p. 445; Zwillinger ...
Informally, the term asymptotic means approaching a value or curve arbitrarily closely (i.e., as some sort of limit is taken). A line or curve A that is asymptotic to given ...
The probability density function for Student's z-distribution is given by f_n(z)=(Gamma(n/2))/(sqrt(pi)Gamma((n-1)/2))(1+z^2)^(-n/2). (1) Now define ...
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of ...
...
View search results from all Wolfram sites (415017 matches)

