Search Results for ""
1001 - 1010 of 3359 for Bessel FunctionSearch Results
A generalization of Fermat's little theorem. Euler published a proof of the following more general theorem in 1736. Let phi(n) denote the totient function. Then a^(phi(n))=1 ...
Binet's first formula for the log gamma function lnGamma(z), where Gamma(z) is a gamma function, is given by for R[z]>0 (Erdélyi et al. 1981, p. 21; Whittaker and Watson ...
The first Debye function is defined by D_n^((1))(x) = int_0^x(t^ndt)/(e^t-1) (1) = x^n[1/n-x/(2(n+1))+sum_(k=1)^(infty)(B_(2k)x^(2k))/((2k+n)(2k!))], (2) for |x|<2pi, n>=1, ...
Let mu(sigma) be the least upper bound of the numbers A such that |zeta(sigma+it)|t^(-A) is bounded as t->infty, where zeta(s) is the Riemann zeta function. Then the Lindelöf ...
Let any finite or infinite set of points having no finite limit point be prescribed and associate with each of its points a principal part, i.e., a rational function of the ...
The distribution with probability density function and distribution function P(x) = (ab^a)/(x^(a+1)) (1) D(x) = 1-(b/x)^a (2) defined over the interval x>=b. It is ...
A standard normal distribution is a normal distribution with zero mean (mu=0) and unit variance (sigma^2=1), given by the probability density function and distribution ...
The q-analog of the factorial (by analogy with the q-gamma function). For k an integer, the q-factorial is defined by [k]_q! = faq(k,q) (1) = ...
A Sheffer sequence for (1,f(t)) is called the associated sequence for f(t), and a sequence s_n(x) of polynomials satisfying the orthogonality conditions ...
The average power of a complex signal f(t) as a function of time t is defined as <f^2(t)>=lim_(T->infty)1/(2T)int_(-T)^T|f(t)|^2dt, where |z| is the complex modulus (Papoulis ...
...


