TOPICS
Search

Search Results for ""


141 - 150 of 1412 for Aperys ConstantSearch Results
Let P(x) be defined as the power series whose nth term has a coefficient equal to the nth prime p_n, P(x) = 1+sum_(k=1)^(infty)p_kx^k (1) = 1+2x+3x^2+5x^3+7x^4+11x^5+.... (2) ...
Consider the Lagrange interpolating polynomial f(x)=b_0+(x-1)(b_1+(x-2)(b_3+(x-3)+...)) (1) through the points (n,p_n), where p_n is the nth prime. For the first few points, ...
G = int_0^infty(e^(-u))/(1+u)du (1) = -eEi(-1) (2) = 0.596347362... (3) (OEIS A073003), where Ei(x) is the exponential integral. Stieltjes showed it has the continued ...
sum_(n=1)^(infty)1/(phi(n)sigma_1(n)) = product_(p prime)(1+sum_(k=1)^(infty)1/(p^(2k)-p^(k-1))) (1) = 1.786576459... (2) (OEIS A093827), where phi(n) is the totient function ...
Let n be a positive nonsquare integer. Then Artin conjectured that the set S(n) of all primes for which n is a primitive root is infinite. Under the assumption of the ...
A problem listed in a fall issue of Gazeta Matematică in the mid-1970s posed the question if x_1>0 and x_(n+1)=(1+1/(x_n))^n (1) for n=1, 2, ..., then are there any values ...
Consider the problem of comparing two real numbers x and y based on their continued fraction representations. Then the mean number of iterations needed to determine if x<y or ...
K=-e^2, where e is the eccentricity of a conic section.
The number 2^(1/3)=RadicalBox[2, 3] (the cube root of 2) which is to be constructed in the cube duplication problem. This number is not a Euclidean number although it is an ...
Let L denote the partition lattice of the set {1,2,...,n}. The maximum element of L is M={{1,2,...,n}} (1) and the minimum element is m={{1},{2},...,{n}}. (2) Let Z_n denote ...
1 ... 12|13|14|15|16|17|18 ... 142 Previous Next

...