TOPICS
Search

Search Results for ""


1451 - 1460 of 1863 for Analytic SpaceSearch Results
The Jacobi triple product is the beautiful identity product_(n=1)^infty(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))=sum_(m=-infty)^inftyx^(m^2)z^(2m). (1) In terms of the ...
Kepler's equation gives the relation between the polar coordinates of a celestial body (such as a planet) and the time elapsed from a given initial point. Kepler's equation ...
The Kronecker symbol is an extension of the Jacobi symbol (n/m) to all integers. It is variously written as (n/m) or (n/m) (Cohn 1980; Weiss 1998, p. 236) or (n|m) (Dickson ...
The lemniscate, also called the lemniscate of Bernoulli, is a polar curve defined as the locus of points such that the the product of distances from two fixed points (-a,0) ...
In 1803, Malfatti posed the problem of determining the three circular columns of marble of possibly different sizes which, when carved out of a right triangular prism, would ...
The Mangoldt function is the function defined by Lambda(n)={lnp if n=p^k for p a prime; 0 otherwise, (1) sometimes also called the lambda function. exp(Lambda(n)) has the ...
The Mathieu functions are the solutions to the Mathieu differential equation (d^2V)/(dv^2)+[a-2qcos(2v)]V=0. (1) Even solutions are denoted C(a,q,v) and odd solutions by ...
The natural logarithm of 2 is a transcendental quantity that arises often in decay problems, especially when half-lives are being converted to decay constants. ln2 has ...
Given a Jacobi theta function, the nome is defined as q(k) = e^(piitau) (1) = e^(-piK^'(k)/K(k)) (2) = e^(-piK(sqrt(1-k^2))/K(k)) (3) (Borwein and Borwein 1987, pp. 41, 109 ...
Q(n), also denoted q(n) (Abramowitz and Stegun 1972, p. 825), gives the number of ways of writing the integer n as a sum of positive integers without regard to order with the ...
1 ... 143|144|145|146|147|148|149 ... 187 Previous Next

...