TOPICS
Search

Search Results for ""


4871 - 4880 of 13135 for Analytic GeometrySearch Results
product_(k=1)^(n)(1+yq^k) = sum_(m=0)^(n)y^mq^(m(m+1)/2)[n; m]_q (1) = sum_(m=0)^(n)y^mq^(m(m+1)/2)((q)_n)/((q)_m(q)_(n-m)), (2) where [n; m]_q is a q-binomial coefficient.
The Cauchy product of two sequences f(n) and g(n) defined for nonnegative integers n is defined by (f degreesg)(n)=sum_(k=0)^nf(k)g(n-k).
A sequence a_1, a_2, ... such that the metric d(a_m,a_n) satisfies lim_(min(m,n)->infty)d(a_m,a_n)=0. Cauchy sequences in the rationals do not necessarily converge, but they ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
Any row r and column s of a determinant being selected, if the element common to them be multiplied by its cofactor in the determinant, and every product of another element ...
The definite integral int_a^bx^ndx={(b^(n+1)-a^(n+1))/(n+1) for n!=1; ln(b/a) for n=-1, (1) where a, b, and x are real numbers and lnx is the natural logarithm.
There are two completely different definitions of Cayley numbers. The first and most commonly encountered type of Cayley number is the eight elements in a Cayley algebra, ...
The linear fractional transformation z|->(i-z)/(i+z) that maps the upper half-plane {z:I[z]>0} conformally onto the unit disk {z:|z|<1}.
Every finite group of order n can be represented as a permutation group on n letters, as first proved by Cayley in 1878 (Rotman 1995).
If (1-z)^(a+b-c)_2F_1(2a,2b;2c;z)=sum_(n=0)^inftya_nz^n, then where (a)_n is a Pochhammer symbol and _2F_1(a,b;c;z) is a hypergeometric function.
1 ... 485|486|487|488|489|490|491 ... 1314 Previous Next

...