TOPICS
Search

Search Results for ""


121 - 130 of 13135 for Analytic GeometrySearch Results
If a function phi:(0,infty)->(0,infty) satisfies 1. ln[phi(x)] is convex, 2. phi(x+1)=xphi(x) for all x>0, and 3. phi(1)=1, then phi(x) is the gamma function Gamma(x). ...
If f(x,y) is an analytic function in a neighborhood of the point (x_0,y_0) (i.e., it can be expanded in a series of nonnegative integer powers of (x-x_0) and (y-y_0)), find a ...
delta(r)=sqrt(r)-2alpha(r), where alpha(r) is the elliptic alpha function.
Let D=D(z_0,R) be an open disk, and let u be a harmonic function on D such that u(z)>=0 for all z in D. Then for all z in D, we have 0<=u(z)<=(R/(R-|z-z_0|))^2u(z_0).
The analytic summation of a hypergeometric series. Powerful general techniques of hypergeometric summation include Gosper's algorithm, Sister Celine's method, Wilf-Zeilberger ...
If an analytic function has a single simple pole at the radius of convergence of its power series, then the ratio of the coefficients of its power series converges to that ...
Let f(s) defined and analytic in a half-strip D={s:sigma_1<=R[s]<=sigma_2,I[s]>=t_0 0}. If |f|<=M on the boundary partialD of D and there is a constant A such that ...
A logarithmic singularity is a singularity of an analytic function whose main z-dependent term is of order O(lnz). An example is the singularity of the Bessel function of the ...
If Omega subset= C is a domain and phi:Omega->C is a one-to-one analytic function, then phi(Omega) is a domain, and area(phi(Omega))=int_Omega|phi^'(z)|^2dxdy (Krantz 1999, ...
The set lambda of linear Möbius transformations w which satisfy w(t)=(at+b)/(ct+d), where a and d are odd and b and c are even. lambda is a subgroup of the modular group ...
1 ... 10|11|12|13|14|15|16 ... 1314 Previous Next

...