Search Results for ""
1701 - 1710 of 3358 for Ackermann FunctionSearch Results
![](/common/images/search/spacer.gif)
The decimal period of a repeating decimal is the number of digits that repeat. For example, 1/3=0.3^_ has decimal period one, 1/11=0.09^_ has decimal period two, and ...
The Dou circle is the circle cutting the sidelines of the reference triangle DeltaABC at A^', A^(''), B^', B^(''), C^', and C^('') such that ...
Exponential growth is the increase in a quantity N according to the law N(t)=N_0e^(lambdat) (1) for a parameter t and constant lambda (the analog of the decay constant), ...
In 1657, Fermat posed the problem of finding solutions to sigma(x^3)=y^2, and solutions to sigma(x^2)=y^3, where sigma(n) is the divisor function (Dickson 2005). The first ...
Let psi = 1+phi (1) = 1/2(3+sqrt(5)) (2) = 2.618033... (3) (OEIS A104457), where phi is the golden ratio, and alpha = lnphi (4) = 0.4812118 (5) (OEIS A002390). Define the ...
The Fourier transform of a Gaussian function f(x)=e^(-ax^2) is given by F_x[e^(-ax^2)](k) = int_(-infty)^inftye^(-ax^2)e^(-2piikx)dx (1) = ...
A general quartic surface defined by x^4+y^4+z^4+a(x^2+y^2+z^2)^2+b(x^2+y^2+z^2)+c=0 (1) (Gray 1997, p. 314). The above two images correspond to (a,b,c)=(0,0,-1), and ...
The orthogonal polynomials defined by h_n^((alpha,beta))(x,N)=((-1)^n(N-x-n)_n(beta+x+1)_n)/(n!) ×_3F_2(-n,-x,alpha+N-x; N-x-n,-beta-x-n;1) =((-1)^n(N-n)_n(beta+1)_n)/(n!) ...
tau is the ratio tau=omega_2/omega_1 of the two half-periods omega_1 and omega_2 of an elliptic function (Whittaker and Watson 1990, pp. 463 and 473) defined such that the ...
The Jacobian of the derivatives partialf/partialx_1, partialf/partialx_2, ..., partialf/partialx_n of a function f(x_1,x_2,...,x_n) with respect to x_1, x_2, ..., x_n is ...
![](/common/images/search/spacer.gif)
...