Search Results for ""
91 - 100 of 1101 for Absolute ValueSearch Results
A singular integral is an integral whose integrand reaches an infinite value at one or more points in the domain of integration. Even so, such integrals can converge, in ...
Given an n-dimensional vector x=[x_1; x_2; |; x_n], (1) a general vector norm |x|, sometimes written with a double bar as ||x||, is a nonnegative norm defined such that 1. ...
An Argand diagram is a plot of complex numbers as points z=x+iy in the complex plane using the x-axis as the real axis and y-axis as the imaginary axis. In the plot above, ...
A complex number may be taken to the power of another complex number. In particular, complex exponentiation satisfies (a+bi)^(c+di)=(a^2+b^2)^((c+id)/2)e^(i(c+id)arg(a+ib)), ...
Two complex numbers x=a+ib and y=c+id are multiplied as follows: xy = (a+ib)(c+id) (1) = ac+ibc+iad-bd (2) = (ac-bd)+i(ad+bc). (3) In component form, ...
The eigenvalues of a graph are defined as the eigenvalues of its adjacency matrix. The set of eigenvalues of a graph is called a graph spectrum. The largest eigenvalue ...
Informally, an L^2-function is a function f:X->R that is square integrable, i.e., |f|^2=int_X|f|^2dmu with respect to the measure mu, exists (and is finite), in which case ...
The sign of a real number, also called sgn or signum, is -1 for a negative number (i.e., one with a minus sign "-"), 0 for the number zero, or +1 for a positive number (i.e., ...
The upper half-plane is the portion of the complex plane {x+iy:x,y in (-infty,infty)} satisfying y=I[z]>0 i.e., {x+iy:x in (-infty,infty),y in (0,infty)}. Common notations ...
A function f(x) is absolutely monotonic in the interval a<x<b if it has nonnegative derivatives of all orders in the region, i.e., f^((k))(x)>=0 (1) for a<x<b and k=0, 1, 2, ...
...
View search results from all Wolfram sites (37247 matches)

