Search Results for ""
591 - 600 of 13135 for ADVANCED ALGEBRASearch Results

Let A = [B D; E C] (1) A^(-1) = [W X; Y Z], (2) where B and W are k×k matrices. Then det(Z)det(A)=det(B). (3) The proof follows from equating determinants on the two sides of ...
Let M_r be an r-rowed minor of the nth order determinant |A| associated with an n×n matrix A=a_(ij) in which the rows i_1, i_2, ..., i_r are represented with columns k_1, ...
Given a matrix A, a Jordan basis satisfies Ab_(i,1)=lambda_ib_(i,1) and Ab_(i,j)=lambda_ib_(i,j)+b_(i,j-1), and provides the means by which any complex matrix A can be ...
The Kronecker sum is the matrix sum defined by A direct sum B=A tensor I_b+I_a tensor B, (1) where A and B are square matrices of order a and b, respectively, I_n is the ...
An algebraically soluble equation of odd prime degree which is irreducible in the natural field possesses either 1. Only a single real root, or 2. All real roots.
If R is a ring (commutative with 1), the height of a prime ideal p is defined as the supremum of all n so that there is a chain p_0 subset ...p_(n-1) subset p_n=p where all ...
A submodule L of a module M such that for any other nonzero submodule K of M, the intersection L intersection K is not the zero module. L is also called an essential ...
Let S={x_1,...,x_n} be a set of n distinct positive integers. Then the matrix [S]_n having the least common multiple LCM(x_i,x_j) of x_i and x_j as its i,jth entry is called ...
A left eigenvector is defined as a row vector X_L satisfying X_LA=lambda_LX_L. In many common applications, only right eigenvectors (and not left eigenvectors) need be ...
A triangular matrix L of the form L_(ij)={a_(ij) for i>=j; 0 for i<j. (1) Written explicitly, L=[a_(11) 0 ... 0; a_(21) a_(22) ... 0; | | ... 0; a_(n1) a_(n2) ... a_(nn)]. ...

...