TOPICS
Search

Search Results for ""


11 - 20 of 214 for ramanujan biographySearch Results
Ramanujan developed a number of interesting closed-form expressions for generalized continued fractions. These include the almost integers ...
Suppose that in some neighborhood of x=0, F(x)=sum_(k=0)^infty(phi(k)(-x)^k)/(k!) (1) for some function (say analytic or integrable) phi(k). Then ...
Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It ...
A hypergeometric identity discovered by Ramanujan around 1910. From Hardy (1999, pp. 13 and 102-103), (1) where a^((n))=a(a+1)...(a+n-1) (2) is the rising factorial (a.k.a. ...
N. Nielsen (1909) and Ramanujan (Berndt 1985) considered the integrals a_k=int_1^2((lnx)^k)/(x-1)dx. (1) They found the values for k=1 and 2. The general constants for k>3 ...
Oloa (2010, pers. comm., Jan. 20, 2010) has considered the following integrals containing nested radicals of 1/2 plus terms in theta^2 and ln^2costheta: R_n^- = (1) R_n^+ = ...
5((x^5)_infty^5)/((x)_infty^6)=sum_(m=0)^inftyP(5m+4)x^m, where (x)_infty is a q-Pochhammer symbol and P(n) is the partition function P.
int_0^inftycos(2zt)sech(pit)dt=1/2sechz for |I[z]|<pi/2. A related integral is int_0^inftycosh(2zt)sech(pit)dt=1/2secz for |R[z]|<pi/2.
int_(-infty)^infty(J_(mu+xi)(x))/(x^(mu+xi))(J_(nu-xi)(y))/(y^(nu-xi))e^(itxi)dxi =[(2cos(1/2t))/(x^2e^(-it/2)+y^2e^(it/2))]^((mu+nu)/2) ...
The sum c_q(m)=sum_(h^*(q))e^(2piihm/q), (1) where h runs through the residues relatively prime to q, which is important in the representation of numbers by the sums of ...
1|2|3|4|5 ... 22 Previous Next

...