TOPICS
Search

Search Results for ""


31 - 40 of 651 for InverseSearch Results
The inverse curve for a parabola given by x = at^2 (1) y = 2at (2) with inversion center (x_0,y_0) and inversion radius k is x = x_0+(k(at^2-x_0))/((at^2+x_0)^2+(2at-y_0)^2) ...
The inverse hyperbolic tangent tanh^(-1)z (Zwillinger 1995, p. 481; Beyer 1987, p. 181), sometimes called the area hyperbolic tangent (Harris and Stocker 1998, p. 267), is ...
For a rectangular hyperbola x = asect (1) y = atant (2) with inversion center at the origin, the inverse curve is x_i = (2kcost)/(a[3-cos(2t)]) (3) y_i = ...
The inverse curve of the cochleoid r=(sintheta)/theta (1) with inversion center at the origin and inversion radius k is the quadratrix of Hippias. x = ktcottheta (2) y = kt. ...
The inverse curve of the epispiral r=asec(ntheta) with inversion center at the origin and inversion radius k is the rose curve r=(kcos(ntheta))/a.
The inverse curve of a lemniscate in a circle centered at the origin and touching the lemniscate where it crosses the x-axis produces a rectangular hyperbola (Wells 1991).
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic cotangent coth^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cotangent (Harris and Stocker 1998, p. 267), ...
The inverse hyperbolic cosecant csch^(-1)z (Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosecant (Harris and Stocker 1998, p. 271) and sometimes denoted ...
1|2|3|4|5|6|7 ... 66 Previous Next

...