Search Results for ""
31 - 40 of 168 for chisquare testSearch Results
For some constant alpha_0, alpha(f,z)<alpha_0 implies that z is an approximate zero of f, where alpha(f,z)=(|f(z)|)/(|f^'(z)|)sup_(k>1)|(f^((k))(z))/(k!f^'(z))|^(1/(k-1)). ...
The Lucas-Lehmer test is an efficient deterministic primality test for determining if a Mersenne number M_n is prime. Since it is known that Mersenne numbers can only be ...
Suppose f(x) is a function of x that is twice differentiable at a stationary point x_0. 1. If f^('')(x_0)>0, then f has a local minimum at x_0. 2. If f^('')(x_0)<0, then f ...
A modified Miller's primality test which gives a guarantee of primality or compositeness. The algorithm's running time for a number n has been proved to be as ...
If a univariate real function f(x) has a single critical point and that point is a local maximum, then f(x) has its global maximum there (Wagon 1991, p. 87). The test breaks ...
Consider a function f(x) in one dimension. If f(x) has a relative extremum at x_0, then either f^'(x_0)=0 or f is not differentiable at x_0. Either the first or second ...
Let |sum_(n=1)^pa_n|<K, (1) where K is independent of p. Then if f_n>=f_(n+1)>0 and lim_(n->infty)f_n=0, (2) it follows that sum_(n=1)^inftya_nf_n (3) converges.
Let suma_k and sumb_k be a series with positive terms and suppose a_1<=b_1, a_2<=b_2, .... 1. If the bigger series converges, then the smaller series also converges. 2. If ...
The series sumf(n) for a monotonic nonincreasing f(x) is convergent if lim_(x->infty)^_(e^xf(e^x))/(f(x))<1 and divergent if lim_(x->infty)__(e^xf(e^x))/(f(x))>1.
Let sum_(n=1)^(infty)u_n(x) be a series of functions all defined for a set E of values of x. If there is a convergent series of constants sum_(n=1)^inftyM_n, such that ...
...