(originally defined for ) that is continuous
but differentiable only on a set of points of
measure zero. The plots above show for (red), 3 (green), and 4 (blue).
The function was published by Weierstrass but, according to lectures and writings by Kronecker and Weierstrass, Riemann seems to have claimed already in 1861 that
the function
is not differentiable on a set dense in the reals. However, Ullrich (1997) indicates
that there is insufficient evidence to decide whether Riemann actually bothered to
give a detailed proof for this claim. du Bois-Reymond (1875) stated without proof
that every interval of contains points at which does not have a finite derivative, and Hardy (1916) proved
that it does not have a finite derivative at any irrational and some of the rational
points. Gerver (1970) and Smith (1972) subsequently proved that has a finite derivative (namely, 1/2) at the set of points
where
and
are integers. Gerver (1971) then proved that is not differentiable at any point of the form or . Together with the result of Hardy that is not differentiable at any irrational value, this completely
solved the problem of the differentiability .
Amazingly, the value of can be computed exactly for rational numbers as
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental
Mathematics in Action. Wellesley, MA: A K Peters, 2007.Berry,
M. V. and Lewis, Z. V. "On the Weierstrass-Mandelbrot Function."
Proc. Roy. Soc. London Ser. A370, 459-484, 1980.Chamizo,
F. and Córdoba, A. "Differentiability and Dimension of Some Fractal Fourier
Series." Adv. Math.142, 335-354, 1999.Darboux, G.
"Mémoire sur les fonctions discontinues." Ann. l'École
Normale, Ser. 24, 57-112, 1875.Darboux, G. "Mémoire
sur les fonctions discontinues." Ann. l'École Normale, Ser. 28,
195-202, 1879.du Bois-Reymond, P. "Versuch einer Klassification
der willkürlichen Functionen reeller Argumente nach ihren Änderungen in
den kleinsten Intervallen." J. für Math.79, 21-37, 1875.Duistermaat,
J. J. "Self-Similarity of 'Riemann's Nondifferentiable Function.' "
Nieuw Arch. Wisk.9, 303-337, 1991.Esrafilian, E. and
Shidfar, A. "Hölder Continuity of Cellerier's Non-Differentiable Function."
Punjab Univ. J. Math. (Lahore)28, 118-121, 1995.Faber,
G. "Einfaches Beispiel einer stetigen nirgends differentiierbaren [sic] Funktion."
Jahresber. Deutschen Math. Verein.16, 538-540, 1907.Falconer,
K. Fractal
Geometry: Mathematical Foundations and Applications. New York: Wiley, 1990.Gerver,
J. "The Differentiability of the Riemann Function at Certain Rational Multiples
of ."
Amer. J. Math.92, 33-55, 1970.Gerver, J. "More on
the Differentiability of the Riemann Function." Amer. J. Math.93,
33-41, 1971.Girgensohn, R. "Functional Equations and Nowhere Differentiable
Functions." Aeq. Math.46, 243-256, 1993.Gluzman,
S. and Sornette, D. "Log-Periodic Route to Fractal Functions." 4 Oct 2001.
http://arxiv.org/abs/cond-mat/0106316.Hairer,
E. and Wanner, G. Analysis
by Its History. New York: Springer-Verlag, 1996.Hardy, G. H.
"Weierstrass's Non-Differentiable Function." Trans. Amer. Math. Soc.17,
301-325, 1916.Havil, J. "Weierstrass Function." §D.2,
Appendix D, in Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 230-231,
2003.Hu, T. Y. and Lau, K.-S. "Fractal Dimensions and Singularities
of the Weierstrass Type Functions." Trans. Amer. Math. Soc.335,
649-665, 1993.Hunt, B. R. "The Hausdorff Dimension of Graphs
of Weierstrass Functions." Proc. Amer. Math. Soc.126, 791-800,
1998.Jaffard, S. "The Spectrum of Singularities of Riemann's Function."
Rev. Mat. Iberoamericana12, 441-460, 1996.Kairies, H.-H.
"Functional Equations for Peculiar Functions." Aeq. Math.53,
207-241, 1997.Kawamoto, S. and Tsubata, T. "The Weierstrass Function
of Chaos Map with Exact Solution." J. Phys. Soc. Japan66, 2209-2210,
1997.Kritikos, H. N. and Jaggard, D. L. (Eds.). Recent
Advances in Electromagnetic Theory. New York: Springer-Verlag, 1992.Landsberg,
G. "Über Differentziierbarkeit stetiger Funktionen." Jahresber.
Deutschen Math. Verein.17, 46-51, 1908.Lerch, M. "Ueber
die Nichtdifferentiirbarkeit [sic] gewisser Functionen." J. reine angew.
Math.13, 126-138, 1888.Mandelbrot, B. B. "Weierstrass
Functions and Kin. Ultraviolet and Infrared Catastrophe." The
Fractal Geometry of Nature. New York: W. H. Freeman, pp. 388-390,
1983.Metzler, W. "Note on a Chaotic Map That Generates Nowhere-Differentiability."
Math. Semesterber.40, 87-90, 1993.Pickover, C. A.
Keys
to Infinity. New York: Wiley, p. 190, 1995.Salzer, H. E.
and Levine, N. "Table of a Weierstrass Continuous Non-Differentiable Function."
Math. Comput.15, 120-130, 1961.Singh, A. N. The
Theory and Construction of Non-Differentiable Functions. Lucknow: Newul Kishore
Press, 1935.Smith, A. "The Differentiability of Riemann's Functions."
Proc. Amer. Math. Soc.34, 463-468, 1972.Sun, D. C.
and Wen, Z. Y. "Dimension de Hausdorff des graphes de séries trigonométriques
lacunaires." C. R. Acad. Sci. Paris Sér. I Math.310, 135-140,
1990.Sun, D. and Wen, Z. "The Hausdorff Dimension of Graph of a
Class of Weierstrass Functions." Progr. Natur. Sci. (English Ed.)6,
547-553, 1996.Sun, D. C. and Wen, Z. Y. "The Hausdorff Dimension
of a Class of Lacunary Trigonometric Series." In Harmonic
Analysis: Proceedings of the Special Program held in Tianjin, March 1-June 30, 1988
(Ed. M.-T. Cheng, X. W. Zhou, and D. G. Deng). Berlin: Springer-Verlag,
pp. 176-181, 1991.Trott, M. The
Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 36,
2004. http://www.mathematicaguidebooks.org/.Ullrich,
P. "Anmerkungen zum 'Riemannschen Beispiel' einer stetigen, nicht differenzierbaren
Funktion." Results Math.31, 245-265, 1997.Volkert,
K. "Die Geschichte der pathologischen Funktionen--Ein Beitrag zur Entstehung
der mathematischen Methodologie." Arch. Hist. Exact Sci.37, 193-232,
1987.Weierstrass, K. Abhandlungen aus der Functionenlehre. Berlin:
J. Springer, p. 97, 1886.