TOPICS
Search

Menger Sponge


MengerSponge1
MengerSponge2
MengerSponge3

The Menger sponge is a fractal which is the three-dimensional analog of the Sierpiński carpet.

Menger (1926) proved that the Menger sponge is universal for all compact 1-dimensional topological spaces, meaning that any compact topological space of dimension 1 has a homeomorphic copy as a subspace of the Menger sponge (Peitgen et al. 1992, Broden et al. 2024).

The nth iteration of the Menger sponge is implemented in the Wolfram Language as MengerMesh[n, 3].

Let N_n be the number of filled boxes, L_n the length of a side of a hole, and V_n the fractional volume after the nth iteration, then

N_n=20^n
(1)
L_n=(1/3)^n=3^(-n)
(2)
V_n=L_n^3N_n=((20)/(27))^n.
(3)

The capacity dimension is therefore

d_(cap)=-lim_(n->infty)(lnN_n)/(lnL_n)
(4)
=log_320
(5)
=(ln20)/(ln3)
(6)
=2.726833028...
(7)

(OEIS A102447).

The Menger sponge, in addition to being a fractal, is also a super-object for all compact one-dimensional objects, i.e., the topological equivalent of all one-dimensional objects can be found in a Menger sponge (Peitgen et al. 1992).

Broden et al. (2024) proved that all knots can be embedded into the Menger sponge (Barber 2024).

Menger sponge metal sculpture (Bathsheba Grossman)

The image above shows a metal print of the Menger sponge created by digital sculptor Bathsheba Grossman (http://www.bathsheba.com/).


See also

Menger Sponge Graph, Sierpiński Carpet, Tetrix

Explore with Wolfram|Alpha

References

Barber, G. "Teen Mathematicians Tie Knots Through a Mind-Blowing Fractal." Quanta Mag., Nov. 26, 2024. https://www.quantamagazine.org/teen-mathematicians-tie-knots-through-a-mind-blowing-fractal-20241126/.Broden, J.; Espinosa, M.; Nazareth, N.; and Voth, N. "Knots Inside Fractals." 5 Sep 2024. https://arxiv.org/abs/2409.03639.Chung, S. and Hur, K. "Volume and Surface Area of the Menger Sponge." Wolfram Demonstrations Project, 2014. https://demonstrations.wolfram.com/VolumeAndSurfaceAreaOfTheMengerSponge/. Dickau, R. "Sierpinski-Menger Sponge Code and Graphic." http://library.wolfram.com/infocenter/MathSource/4662/.Dickau, R. M. "Menger (Sierpinski) Sponge." http://mathforum.org/advanced/robertd/sponge.html.Gleick, J. Chaos: Making a New Science. New York: Penguin Books, p. 101, 1988.Grossman, B. "Menger Sponge." http://www.bathsheba.com/math/menger.Kosmulski, M. "Modulus Origami--Fractals, IFS." http://hektor.umcs.lublin.pl/~mikosmul/origami/fractals.html.Mandelbrot, B. B. The Fractal Geometry of Nature. New York: W. H. Freeman, p. 145, 1983.Menger, K. "Allgemeine Räume und Cartesische Räume. I." Comm. Amsterdam Acad. Sci., 1926.Menger, K. Dimensionstheorie. Leipzig, Germany: Teubner, 1928.Mosely, J. "Menger's Sponge (Depth 3)." http://world.std.com/~j9/sponge/.Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992.Sloane, N. J. A. Sequence A102447 in "The On-Line Encyclopedia of Integer Sequences."Werbeck, S. "A Journey into Menger's Sponge." http://www.angelfire.com/art2/stw/.

Referenced on Wolfram|Alpha

Menger Sponge

Cite this as:

Weisstein, Eric W. "Menger Sponge." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MengerSponge.html

Subject classifications