The Menger sponge is a fractal which is the three-dimensional
analog of the Sierpiński carpet .
Menger (1926) proved that the Menger sponge is universal for all compact 1-dimensional topological spaces, meaning that any compact topological space of dimension 1 has
a homeomorphic copy as a subspace of the Menger sponge
(Peitgen et al. 1992, Broden et al. 2024).
The th iteration of the Menger sponge is implemented
in the Wolfram Language as MengerMesh [n ,
3].
Let be the number of filled boxes, the length of a side of a hole, and
the fractional volume
after the th
iteration, then
The capacity dimension is therefore
(OEIS A102447 ).
The Menger sponge, in addition to being a fractal , is also a super-object for all compact one-dimensional objects, i.e., the topological
equivalent of all one-dimensional objects can be found in a Menger sponge (Peitgen
et al. 1992).
Broden et al. (2024) proved that all knots can be embedded into the Menger
sponge (Barber 2024).
The image above shows a metal print of the Menger sponge created by digital sculptor
Bathsheba Grossman (http://www.bathsheba.com/ ).
See also Menger Sponge Graph ,
Sierpiński
Carpet ,
Tetrix
Explore with Wolfram|Alpha
References Barber, G. "Teen Mathematicians Tie Knots Through a Mind-Blowing Fractal." Quanta Mag. , Nov. 26, 2024. https://www.quantamagazine.org/teen-mathematicians-tie-knots-through-a-mind-blowing-fractal-20241126/ . Broden,
J.; Espinosa, M.; Nazareth, N.; and Voth, N. "Knots Inside Fractals." 5
Sep 2024. https://arxiv.org/abs/2409.03639 . Chung,
S. and Hur, K. "Volume and Surface Area of the Menger Sponge." Wolfram
Demonstrations Project, 2014. https://demonstrations.wolfram.com/VolumeAndSurfaceAreaOfTheMengerSponge/ . Dickau, R. "Sierpinski-Menger Sponge Code and Graphic." http://library.wolfram.com/infocenter/MathSource/4662/ .Dickau,
R. M. "Menger (Sierpinski) Sponge." http://mathforum.org/advanced/robertd/sponge.html . Gleick,
J. Chaos:
Making a New Science. New York: Penguin Books, p. 101, 1988. Grossman,
B. "Menger Sponge." http://www.bathsheba.com/math/menger . Kosmulski,
M. "Modulus Origami--Fractals, IFS." http://hektor.umcs.lublin.pl/~mikosmul/origami/fractals.html . Mandelbrot,
B. B. The
Fractal Geometry of Nature. New York: W. H. Freeman, p. 145, 1983. Menger,
K. "Allgemeine Räume und Cartesische Räume. I." Comm. Amsterdam
Acad. Sci. , 1926. Menger, K. Dimensionstheorie. Leipzig, Germany:
Teubner, 1928. Mosely, J. "Menger's Sponge (Depth 3)." http://world.std.com/~j9/sponge/ . Peitgen,
H.-O.; Jürgens, H.; and Saupe, D. Chaos
and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992. Sloane,
N. J. A. Sequence A102447 in "The
On-Line Encyclopedia of Integer Sequences." Werbeck, S. "A
Journey into Menger's Sponge." http://www.angelfire.com/art2/stw/ . Referenced
on Wolfram|Alpha Menger Sponge
Cite this as:
Weisstein, Eric W. "Menger Sponge." From
MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/MengerSponge.html
Subject classifications More... Less...