The Koch snowflake is a fractal curve, also known as the Koch island, which was first described by Helge von Koch in 1904. It is built
by starting with an equilateral triangle,
removing the inner third of each side, building another equilateral
triangle at the location where the side was removed, and then repeating the process
indefinitely. The Koch snowflake can be simply encoded as a Lindenmayer
system with initial string "F--F--F", string
rewriting rule "F" -> "F+F--F+F", and angle . The zeroth through third iterations
of the construction are shown above.
Each fractalized side of the triangle is sometimes known as a Koch curve.
The fractal can also be constructed using a base curve and motif, illustrated above.
Let
be the number of sides,
be the length of a single side, be the length of the perimeter,
and
the snowflake's area after the th iteration. Further, denote the area
of the initial triangle , and the length of an initial side 1. Then
Some beautiful tilings, a few examples of which are illustrated
above, can be made with iterations toward Koch snowflakes.
In addition, two sizes of Koch snowflakes in area ratio 1:3 tile the plane, as shown
above.
Another beautiful modification of the Koch snowflake involves inscribing the constituent triangles with filled-in triangles, possibly rotated at some angle. Some sample results are illustrated above for 3 and 4 iterations.
Bulaevsky, J. "The Koch Curve Fractal." http://ejad.best.vwh.net/java/fractals/koch.shtml.Cesàro, E. "Remarques sur la courbe de von Koch." Atti della R. Accad. della
Scienze fisiche e matem. Napoli12, No. 15, 1-12, 1905. Reprinted
as §228 in Opere scelte, a cura dell'Unione matematica italiana e col contributo
del Consiglio nazionale delle ricerche, Vol. 2: Geometria, analisi, fisica matematica.
Rome: Edizioni Cremonese, pp. 464-479, 1964.Charpentier, M. "L-Systems
in PostScript." http://www.cs.unh.edu/~charpov/Programming/L-systems/.Cundy,
H. and Rollett, A. Mathematical
Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 65-66, 1989.Dickau,
R. M. "Two-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys2d.html.Dixon,
R. Mathographics.
New York: Dover, pp. 175-177 and 179, 1991.Flake, G. W. The
Computational Beauty of Nature. Cambridge, MA: MIT Press, p. 89, 1998.Gardner,
M. The
Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University
of Chicago Press, p. 227, 1984.Gleick, J. Chaos:
Making a New Science. New York: Penguin Books, p. 99 and center plate
(following p. 114), 1988.Harris, J. W. and Stocker, H. "Koch's
Curve" and "Koch's Snowflake." §4.11.5-4.11.6 in Handbook
of Mathematics and Computational Science. New York: Springer-Verlag, pp. 114-115,
1998.King, B. W. "Snowflake Curves." Math. Teacher57,
219-222, 1964.Knopp, K. "Einheitliche Erzeugung und Darstellung
der Kurven von Peano, Osgood und v. Koch." Arch. f. Math. u. Phys.26,
103-115, 1917.Koch, H. von. "Sur une courbe continue sans
tangente, obtenue par une construction géométrique élémentaire."
Archiv för Matemat., Astron. och Fys.1, 681-702, 1904.Koch,
H. von. "Une méthode géométrique élémentaire
pour l'étude de certaines questions de la théorie des courbes planes."
Acta Math.30, 145-174, 1906.Kosmulski, M. "Modulus
Origami--Fractals, IFS." http://hektor.umcs.lublin.pl/~mikosmul/origami/fractals.html.Lauwerier,
H. Fractals:
Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University
Press, pp. 28-29 and 32-36, 1991.Mandelbrot, B. B. The
Fractal Geometry of Nature. New York: W. H. Freeman, pp. 42-45,
1983.Pappas, T. "The Snowflake Curve." The
Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 78 and
160-161, 1989.Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Chaos
and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992.Peitgen,
H.-O. and Saupe, D. (Eds.). "The von Koch Snowflake Curve Revisited." §C.2
in The
Science of Fractal Images. New York: Springer-Verlag, pp. 275-279, 1988.Schneider,
J. E. "A Generalization of the Von Koch Curves." Math. Mag.38,
144-147, 1965.Sloane, N. J. A. Sequence A100831
in "The On-Line Encyclopedia of Integer Sequences."Wagon,
S. Mathematica
in Action. New York: W. H. Freeman, pp. 185-195, 1991.Wells,
D. The
Penguin Dictionary of Curious and Interesting Geometry. London: Penguin,
pp. 135-136, 1991.