Confluent Hypergeometric Function of the First Kind
The confluent hypergeometric function of the first kind
is
a degenerate form of the hypergeometric function
which
arises as a solution the confluent
hypergeometric differential equation. It is also known as Kummer's function of
the first kind. There are a number of other notations used for the function (Slater
1960, p. 2), including
(Kummer 1836),
(Airey
and Webb 1918),
(Humbert
1920), and
(Magnus and Oberhettinger 1948). An alternate form of the solution to the confluent
hypergeometric differential equation is known as the Whittaker
function.
The confluent hypergeometric function of the first kind is implemented in the Wolfram Language as Hypergeometric1F1[a,
b, z].
The confluent hypergeometric function has a hypergeometric
series given by
 |
(1)
|
where
and
are Pochhammer
symbols. If
and
are integers,
, and either
or
, then the
series yields a polynomial with a finite number of
terms. If
is an integer
, then
is
undefined. The confluent hypergeometric function is given in terms of the Laguerre
polynomial by
 |
(2)
|
(Arfken 1985, p. 755), and also has an integral representation
 |
(3)
|
(Abramowitz and Stegun 1972, p. 505).
Bessel functions, erf, the incomplete gamma function, Hermite
polynomial, Laguerre polynomial, as well
as other are all special cases of this function (Abramowitz and Stegun 1972, p. 509).
Kummer showed that
 |
(4)
|
(Koepf 1998, p. 42).
Kummer's second formula gives
where
,
,
, ....
SEE ALSO: Confluent Hypergeometric Differential Equation,
Confluent
Hypergeometric Function of the Second Kind,
Confluent
Hypergeometric Limit Function,
Generalized
Hypergeometric Function,
Hypergeometric
Function,
Hypergeometric Series,
Kummer's Formulas,
q-Hypergeometric
Function,
Weber-Sonine Formula,
Whittaker
Function
RELATED WOLFRAM SITES: http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/,
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1Regularized/
REFERENCES:
Abad, J. and Sesma, J. "Computation of the Regular Confluent Hypergeometric
Function." Mathematica J. 5, 74-76, 1995.
Abramowitz, M. and Stegun, I. A. (Eds.). "Confluent Hypergeometric Functions." Ch. 13 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 503-515, 1972.
Airey, J. R. "The Confluent Hypergeometric Function." Brit. Assoc.
Rep. (Oxford), 276-294, 1926.
Airey, J. R. "The Confluent Hypergeometric Function." Brit. Assoc.
Rep. (Leeds), 220-244, 1927.
Airey, J. R. and Webb, H. A. "The Practical Importance of the Confluent
Hypergeometric Function." Philos. Mag. 36, 129-141, 1918.
Arfken, G. "Confluent Hypergeometric Functions." §13.6 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 753-758,
1985.
Buchholz, H. The Confluent Hypergeometric Function with Special Emphasis on its Applications.
New York: Springer-Verlag, 1969.
Humbert, P. "Sur les fonctions hypercylindriques." C. R. Acad. Sci.
Paris 171, 490-492, 1920.
Iyanaga, S. and Kawada, Y. (Eds.). "Hypergeometric Function of Confluent Type." Appendix A, Table 19.I in Encyclopedic
Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1469, 1980.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, 1998.
Kummer, E. E. "Über die hypergeometrische Reihe
."
J. reine angew. Math. 15, 39-83, 1836.
Magnus, W. and Oberhettinger, F. Formeln und Lehrsätze für die speziellen
Funktionen der mathematischen Physik. Berlin, 1948.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 551-554 and
604-605, 1953.
Slater, L. J. Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press,
1960.
Spanier, J. and Oldham, K. B. "The Kummer Function
."
Ch. 47 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 459-469, 1987.
Tricomi, F. G. Fonctions hypergéométriques confluentes.
Paris: Gauthier-Villars, 1960.
Referenced on Wolfram|Alpha:
Confluent
Hypergeometric Function of the First Kind
CITE THIS AS:
Weisstein, Eric W. "Confluent Hypergeometric Function of the First Kind." From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html