q-Hypergeometric Function

DOWNLOAD Mathematica Notebook

The modern definition of the q-hypergeometric function is

 _rphi_s[alpha_1,alpha_2,...,alpha_r; beta_1,...,beta_s;q,z] 
 =sum_(n=0)^infty((alpha_1;q)_n(alpha_2;q)_n...(alpha_r;q)_n)/((beta_1;q)_n...(beta_s;q)_n)(z^n)/((q;q)_n)[(-1)^nq^((n; 2))]^(1+s-r),
(1)

where (n; 2)=1/2n(n-1) is a binomial coefficient and (a;q)_n is a q-Pochhammer symbol (Gasper and Rahman 1990; Bhatnagar 1995, p. 21; Koepf 1998, p. 25). This is the version of the q-hypergeometric function implemented in the Wolfram Language as QHypergeometricPFQ[{a1, ..., ar}, {b1, ..., bs}, q, z].

An older form of definition omits the factor [(-1)^kq^((n; 2))]^(1+s-r),

 _rphi_s^'[alpha_1,alpha_2,...,alpha_r; beta_1,...,beta_s;q,z]=sum_(n=0)^infty((alpha_1;q)_n(alpha_2;q)_n...(alpha_r;q)_n)/((beta_1;q)_n...(beta_s;q)_n)(z^n)/((q;q)_n),
(2)

This is the q-hypergeometric function as defined by Bailey (1935), Slater (1966), Andrews (1986), and Hardy (1999).

Note that the two definitions coincide when r=1+s, including the common case _2phi_1(a,b;c;q).

A particular case of _rphi_s is given by

 _2psi_1(a,b;c;q,z)=sum_(n=0)^infty((a;q)_n(b;q)_nz^n)/((q;q)_n(c;q)_n)
(3)

(Andrews 1986, p. 10). A q-analog of Gauss's theorem (the q-Gauss identity) due to Jacobi and Heine is given by

 _2phi_1(a,b;c;q,c/(ab))=((c/a;q)_infty(c/b;q)_infty)/((c;q)_infty(c/(ab);q)_infty)
(4)

for |c/(ab)|<1 (Koepf 1998, p. 40). Heine proved the transformation formula

 _2phi_1(a,b;c;q,z)=((b;q)_infty(az;q)_infty)/((c;q)_infty(z;q)_infty)_2phi_1(c/b,z;az;q,b),
(5)

(Andrews 1986, pp. 10-11). Rogers (1893) obtained the formulas

 _2phi_1(a,b;c;q,z)=((c/b;q)_infty(bz;q)_infty)/((z;q)_infty(c;q)_infty)_2phi_1(b,abz/c;bz;q,c/b)
(6)
 _2phi_1(a,b,c;q,z)=((abz/c;q)_infty)/((z;q)_infty)_2phi_1(c/a,c/b;c;q,abz/c)
(7)

(Andrews 1986, pp. 10-11).

The function _rphi_s has the simple confluent identity

 lim_(alpha_r->infty)_rphi_s[alpha_1,alpha_2,...,alpha_r; beta_1,...,beta_s;q,z/(alpha_r)]=_(r-1)phi_s[alpha_1,alpha_2,...,alpha_(r-1); beta_1,...,beta_s;q,z].
(8)

In the limit q->1^-,

 lim_(q->1^-)_rphi_s[q^(alpha_1),q^(alpha_2),...,q^(alpha_r); q^(beta_1),...,q^(beta_s);q,(q-1)^(1+s-r)z]=_rF_s[alpha_1,alpha_2,...,alpha_r; beta_1,...,beta_s;z],
(9)

where _rF_s is a generalized hypergeometric function (Koepf 1998, p. 25).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.