Commutative Diagram

A commutative diagram is a collection of maps A_i-->^(phi_i)B_i in which all map compositions starting from the same set A and ending with the same set B give the same result. In symbols this means that, whenever one can form two sequences

 A=A_(i_0)-->^(phi_(i_0))B_(i_0)=A_(i_1)-->^(phi_(i_1))B_(i_1)=A_(i_2)-->^(phi_(i_2))...-->^(phi_(i_(n-1)))B_(i_(n-1))=A_(i_n)-->^(phi_(i_n))B_(i_n)=B,
(1)

and

 A=A_(j_0)-->^(phi_(j_0))B_(j_0)=A_(j_1)-->^(phi_(j_1))B_(j_1)=A_(j_2)-->^(phi_(j_2))...-->^(phi_(i_(m-1)))B_(i_(m-1))=A_(i_m)-->^(phi_(i_m))B_(i_m)=B,
(2)

the following equality holds:

 phi_(i_n) degreesphi_(i_(n-1)) degrees... degreesphi_(i_1) degreesphi_(i_0)=phi_(j_m)Degree]phi_(j_(m-1)) degrees... degreesphi_(j_1) degreesphi_(j_0).
(3)
CommutativeTriangleCommutativeSquare

Commutative diagrams are usually composed by commutative triangles and commutative squares.

CommutativePlaneCommutativeCube

Commutative triangles and squares can also be combined to form plane figures or space arrangements.

CommutativeMultiarrow

A commutative diagram can also contain multiple arrows that indicate different maps between the same two sets.

CommutativeLoopedArrow

A looped arrow indicates a map from a set to itself.

CommutativeInverseMap

The above commutative diagram expresses the fact that g is the inverse map to f, since it is a pictorial translation of the map equalities g degreesf=id_A and f degreesg=id_B.

CommutativeInverseMap2

This can also be represented using two separate diagrams.

Many other mathematical concepts and properties, especially in algebraic topology, homological algebra, and category theory, can be formulated in terms of commutative diagrams.

CommutativeModuleHomomorphism

For example, a module M is projective iff any surjective module homomorphism U-->^sV and any module homomorphism M-->^phiV can be completed to a commutative diagram.

CommutativeInjectiveModule

Similarly, one can characterize the dual notion of injective module: a module M is injective iff any injective module homomorphism and U-->^iV and any module homomorphism U-->^phiM can be completed to a commutative triangle.

According to Baer's criterion, it is sufficient to require this condition for the inclusion maps i of the ideals of R in R.

CommutativeChainHomomorphism

Another example of a notion based on diagrams is the chain homomorphism, which can be visualized as a sequence of commutative squares.

The advantage of drawing commutative diagrams is the possibility to seize any given map configuration at a glance. The picture also facilitates the task of composing maps, which is like following directed paths from set to set. Many homological theorems are proven by studying commutative diagrams: this method is usually referred to as "diagram chasing."

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.