Injective Module
An injective module is the dual notion to the projective module. A module
over a unit
ring
is called injective iff
whenever
is contained as a submodule
in a module
, there exists
a submodule
of
such that the
direct sum
is
isomorphic to
(in other words,
is a direct
summand of
). The subset
of
is an example
of a noninjective
-module; it is a
-submodule of
, and it is isomorphic to
;
, however, is
not isomorphic to the direct sum
.
The field of rationals
and its quotient
module
are examples of injective
-modules.
A direct product of injective modules is always injective. The corresponding property for direct sums does not hold in general, but it is true for modules over Noetherian
rings.
The notion of injective module can also be characterized by means of commutative diagrams, split exact sequences, or exact functors.
SEE ALSO: Commutative Diagram,
Baer's Criterion,
Cofree
Module,
Divisible Module,
Exact
Functor,
Projective Module
This entry contributed by Margherita
Barile
REFERENCES:
Beachy, J. A. Introductory Lectures on Rings and Modules. Cambridge, England: Cambridge University Press,
pp. 93-95, 1999.
Bruns, W. and Herzog, J. Cohen-Macaulay Rings, 2nd ed. Cambridge, England: Cambridge University Press, pp. 87-91,
1998.
Cartan H. and Eilenberg, S. "Injective Modules." §1.3 in Homological
Algebra. Princeton, NJ: Princeton University Press, pp. 8-10, 1956.
Hilton, P. J. and Stammbach, U. "Dualization, Injective Modules" and "Injective Modules over a Principal Ideal Domain." §6 and 7 in A
Course in Homological Algebra, 2nd ed. New York: Springer-Verlag, pp. 28-33,
1997.
Jacobson, N. "Injective Modules. Injective Hull." §3.11 in Basic
Algebra II. San Francisco, CA: W. H. Freeman, pp. 155-164, 1980.
Lam, T. Y. "Injective Modules." §3 in Lectures
on Modules and Rings. New York: Springer-Verlag, pp. 60-120, 1999.
Lang, S. "Injective Modules." §20.4 in Algebra,
rev. 3rd ed. New York: Springer-Verlag, pp. 782-786, 2002.
Mac Lane, S. "Injective Modules." §7 in Homology.
Berlin: Springer-Verlag, pp. 92-95, 1967.
Passman, D. S. A Course in Ring Theory. Pacific Grove, CA: Wadsworth & Brooks/Cole, pp. 206-210,
1991.
Northcott, D. G. "Injective Modules." §5.2 in An Introduction to Homological Algebra. Cambridge, England: Cambridge University
Press, pp. 67-70, 1966.
Rowen, L. H. "Injective Modules." §2.10 in Ring
Theory, Vol. 1. San Diego, CA: Academic Press, pp. 261-270, 1988.
Sharpe, D. W. and Vámos, P. Injective
Modules. Cambridge, England: Cambridge University Press, 1972.
Referenced on Wolfram|Alpha:
Injective Module
CITE THIS AS:
Barile, Margherita. "Injective Module." From MathWorld--A Wolfram Web Resource, created by Eric
W. Weisstein. http://mathworld.wolfram.com/InjectiveModule.html