TOPICS

# Search Results for " function cleanQuery(html){ let doc = new DOMParser().parseFromString(html, 'text/html'); return doc.body.textContent || ""; } var params = new URLSearchParams(window.location.search); var queryValue; if(params.get('query') != null){ document.write(cleanQuery(params.get('query'))); document.title = cleanQuery(params.get('query'))+' - Wolfram Search'; queryValue = params.get('query'); } if(params.get('q') != null){ document.write(cleanQuery(params.get('q'))); document.title = cleanQuery(params.get('q'))+' - Wolfram Search'; queryValue = params.get('q'); } "

21 - 30 of 152 for eros NEARSearch Results
Analytic continuation (sometimes called simply "continuation") provides a way of extending the domain over which a complex function is defined. The most common application is ...
Complex analysis is the study of complex numbers together with their derivatives, manipulation, and other properties. Complex analysis is an extremely powerful tool with an ...
An almost integer is a number that is very close to an integer. Near-solutions to Fermat's last theorem provide a number of high-profile almost integers. In the season 7, ...
A type of plot invented by M. Trott that shows the behavior of a function near and far from the origin simultaneously. Inside a given radius, the plot shows the actual value ...
A Fermat prime is a Fermat number F_n=2^(2^n)+1 that is prime. Fermat primes are therefore near-square primes. Fermat conjectured in 1650 that every Fermat number is prime ...
A matching, also called an independent edge set, on a graph G is a set of edges of G such that no two sets share a vertex in common. It is not possible for a matching on a ...
The irrational constant R = e^(pisqrt(163)) (1) = 262537412640768743.9999999999992500... (2) (OEIS A060295), which is very close to an integer. Numbers such as the Ramanujan ...
A point where a stable and an unstable separatrix (invariant manifold) from the same fixed point or same family intersect. Therefore, the limits lim_(k->infty)f^k(X) and ...
A root-finding algorithm based on the iteration formula x_(n+1)=x_n-(f(x_n))/(f^'(x_n)){1+(f(x_n)f^('')(x_n))/(2[f^'(x_n)]^2)}. This method, like Newton's method, has poor ...
There exist points A^', B^', and C^' on segments BC, CA, and AB of a triangle, respectively, such that A^'C+CB^'=B^'A+AC^'=C^'B+BA^' (1) and the lines AA^', BB^', CC^' ...
1|2|3|4|5|6 ... 16

...