TOPICS
Search

Search Results for ""


21 - 30 of 261 for RelationsSearch Results
A mathematical relationship transforming a function f(x) to the form f(x+a).
The term "closure" has various meanings in mathematics. The topological closure of a subset A of a topological space X is the smallest closed subset of X containing A. If R ...
Let X and Y be sets, and let R subset= X×Y be a relation on X×Y. Then R is a concurrent relation if and only if for any finite subset F of X, there exists a single element p ...
Let (a)_i be a sequence of complex numbers and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as f_(nk)=(product_(j=k)^(n-1)(a_j+k))/((n-k)!) and ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a join-homomorphism, then it is a join-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If K=L and h is a join-homomorphism, then we call h a join-endomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a join-homomorphism provided that for any x,y in L, h(x v y)=h(x) v h(y). It is also ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a join-isomorphism if it preserves joins.
A lattice automorphism is a lattice endomorphism that is also a lattice isomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice endomorphism is a mapping h:L->L that preserves both meets and joins.
1|2|3|4|5|6 ... 27 Previous Next

...