TOPICS
Search

Wiener-Khinchin Theorem


Recall the definition of the autocorrelation function C(t) of a function E(t),

 C(t)=int_(-infty)^inftyE^_(tau)E(t+tau)dtau.
(1)

Also recall that the Fourier transform of E(t) is defined by

 E(tau)=int_(-infty)^inftyE_nue^(-2piinutau)dnu,
(2)

giving a complex conjugate of

 E^_(tau)=int_(-infty)^inftyE^__nue^(2piinutau)dnu.
(3)

Plugging E^_(tau) and E(t+tau) into the autocorrelation function therefore gives

C(t)=int_(-infty)^infty[int_(-infty)^inftyE^__nue^(2piinutau)dnu][int_(-infty)^inftyE_(nu^')e^(-2piinu^'(t+tau))dnu^']dtau
(4)
=int_(-infty)^inftyint_(-infty)^inftyint_(-infty)^inftyE^__nuE_(nu^')e^(-2piitau(nu^'-nu))e^(-2piinu^'t)dtaudnudnu^'
(5)
=int_(-infty)^inftyint_(-infty)^inftyE^__nuE_(nu^')delta(nu^'-nu)e^(-2piinu^'t)dnudnu^'
(6)
=int_(-infty)^inftyE^__nuE_nue^(-2piinut)dnu
(7)
=int_(-infty)^infty|E_nu|^2e^(-2piinut)dnu
(8)
=F_nu[|E_nu|^2](t),
(9)

so, amazingly, the autocorrelation is simply given by the Fourier transform of the absolute square of E_nu.

The Wiener-Khinchin theorem is a special case of the cross-correlation theorem with f=g.


See also

Autocorrelation, Cross-Correlation Theorem, Fourier Transform, Plancherel's Theorem, Power Spectrum

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Wiener-Khinchin Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Wiener-KhinchinTheorem.html

Subject classifications