TOPICS
Search

Unicoherent Space


Let X be a connected topological space. Then X is unicoherent provided that for any closed connected subsets A and B of X, if X=A union B, then A intersection B is connected.

UnicoherentSpace

An interval, say [0,1], is unicoherent, but a circle, say S^1={e^(itheta):theta in [0,2pi]} subset= C, is not unicoherent. An interesting example of a unicoherent space is a ray winding down on a circle. Specifically, let X=S^1 union W, where W={(1+1/(1+theta))e^(itheta):0<=theta<infty} subset= C. Then the space X, illustrated above, is unicoherent.


See also

Connected Space, Hereditarily Unicoherent Continuum, Topological Space

This entry contributed by Matt Insall (author's link)

Explore with Wolfram|Alpha

References

Charatonik, J. J. and Prajs, J. R. "On Local Connectedness of Absolute Retracts." Pacific J. Math. 201, 83-88, 2001.Mackowiak, T. "Retracts of Hereditarily Unicoherent Continua." Bull. Acad. Polon. Sci. Ser. Sci. Math. 28, 177-183, 1980.

Referenced on Wolfram|Alpha

Unicoherent Space

Cite this as:

Insall, Matt. "Unicoherent Space." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/UnicoherentSpace.html

Subject classifications