TOPICS
Search

Trigonometry Angles--Pi/7


Trigonometric functions of npi/7 for n an integer cannot be expressed in terms of sums, products, and finite root extractions on real rational numbers because 7 is not a Fermat prime. This also means that the heptagon is not a constructible polygon.

TrigonometryAnglesPi7

However, exact expressions involving roots of complex numbers can still be derived either using the trigonometric identity

 sin(nalpha)=2sin[(n-1)alpha]cosalpha-sin[(n-2)alpha]
(1)

with n=7 or by expressing sin(pi/7) in terms of complex exponentials and simplifying the resulting expression. Letting (P(x))_n denote the nth root of the polynomial P(x) using the ordering of the Wolfram Language's Root function gives the following algebraic root representations for trigonometric functions with argument pi/7,

cos(pi/7)=(8x^3-4x^2-4x+1)_3
(2)
cot(pi/7)=(7x^6-35x^4+21x^2-1)_6
(3)
csc(pi/7)=(7x^6-56x^4+112x^2-64)_6
(4)
sec(pi/7)=(x^3-4x^2-4x+8)_2
(5)
sin(pi/7)=(64x^6-112x^4+56x^2-7)_4
(6)
tan(pi/7)=(x^6-21x^4+35x^2-7)_4,
(7)

with argument 2pi/7,

cos((2pi)/7)=(8x^3+4x^2-4x-1)_3
(8)
cot((2pi)/7)=(7x^6-35x^4+21x^2-1)_5
(9)
csc((2pi)/7)=(7x^6-56x^4+112x^2-64)_5
(10)
sec((2pi)/7)=(x^3+4x^2-4x-8)_3
(11)
sin((2pi)/7)=(64x^6-112x^4+56x^2-7)_5
(12)
tan((2pi)/7)=(x^6-21x^4+35x^2-7)_5,
(13)

and with argument 3pi/7,

cos((3pi)/7)=(8x^3-4x^2-4x+1)_2
(14)
cot((3pi)/7)=(7x^6-35x^4+21x^2-1)_4
(15)
csc((3pi)/7)=(7x^6-56x^4+112x^2-64)_4
(16)
sec((3pi)/7)=(x^3-4x^2-4x+8)_3
(17)
sin((3pi)/7)=(64x^6-112x^4+56x^2-7)_6
(18)
tan((3pi)/7)=(x^6-21x^4+35x^2-7)_6.
(19)

Root and Galois-minimal expressions can be obtained using Wolfram Language code such as the following:

  RootReduce[TrigToRadicals[Sin[Pi/7]]]
  Developer`TrigToRadicals[Sin[Pi/7]]

Combinations of the functions satisfy

sin(pi/7)sin((2pi)/7)sin((3pi)/7)=(sqrt(7))/8
(20)
cos(pi/7)cos((2pi)/7)cos((3pi)/7)=1/8
(21)
cos^2(pi/7)-cos(pi/7)cos((2pi)/7)=1/4
(22)

(Bankoff and Garfunkel 1973). A sum identity is given by

 sin(pi/7)-sin((2pi)/7)-sin((4pi)/7)=-(sqrt(7))/2.
(23)

Another interesting identity is given by

 cos^(1/3)((2pi)/7)-[-cos((4pi)/7)]^(1/3)-[-cos((6pi)/7)]^(1/3) 
 =-[1/2(3·7^(1/3)-5)]^(1/3)
(24)

(Borwein and Bailey 2003, p. 77).


See also

Heptagon, Heptagonal Triangle, Silver Constant, Trigonometry Angles, Trigonometry

Explore with Wolfram|Alpha

References

Bankoff, L. and Garfunkel, J. "The Heptagonal Triangle." Math. Mag. 46, 7-19, 1973.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Cite this as:

Weisstein, Eric W. "Trigonometry Angles--Pi/7." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TrigonometryAnglesPi7.html

Subject classifications