TOPICS
Search

Trigonometry Angles--Pi/3


TrigonometryAnglesPi3

Construction of the angle pi/3=60 degrees produces a 30-60-90 triangle, which has angles theta=pi/3 and theta/2=pi/6. From the above diagram, write y=sintheta for the vertical leg, then the horizontal leg is given by

 x=sqrt(1-y^2)=sin(1/2theta)
(1)

by the Pythagorean theorem. Now use the double-angle formula

 sintheta=2sin(1/2theta)cos(1/2theta)
(2)

to obtain

 y=2sqrt(1-y^2)y,
(3)

which can be solved for y=sintheta to yield

 sintheta=1/2sqrt(3).
(4)

Filling in the remainder of the trigonometric functions then gives

cos(pi/3)=1/2
(5)
cot(pi/3)=1/3sqrt(3)
(6)
csc(pi/3)=2/3sqrt(3)
(7)
sec(pi/3)=2
(8)
sin(pi/3)=1/2sqrt(3)
(9)
tan(pi/3)=sqrt(3).
(10)

See also

30-60-90 Triangle, Equilateral Triangle, Trigonometry Angles, Trigonometry, Trigonometry Angles--Pi/6

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Trigonometry Angles--Pi/3." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TrigonometryAnglesPi3.html

Subject classifications