TOPICS
Search

Trigonometry Angles--Pi/20


Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx,

cos(pi/(20))=1/4sqrt(8+2sqrt(10+2sqrt(5)))
(1)
cos((3pi)/(20))=1/4sqrt(8+2sqrt(10-2sqrt(5)))
(2)
cos((7pi)/(20))=1/4sqrt(8-2sqrt(10-2sqrt(5)))
(3)
cos((9pi)/(20))=1/4sqrt(8-2sqrt(10+2sqrt(5)))
(4)

for cotx,

cot(pi/(20))=1+sqrt(5)+sqrt(5+2sqrt(5))
(5)
cot((3pi)/(20))=-1+sqrt(5)+sqrt(5-2sqrt(5))
(6)
cot((7pi)/(20))=-1+sqrt(5)-sqrt(5-2sqrt(5))
(7)
cot((9pi)/(20))=1+sqrt(5)-sqrt(5+2sqrt(5))
(8)

for cscx,

csc(pi/(20))=sqrt(12+4sqrt(5)+2sqrt(50+22sqrt(5)))
(9)
csc((3pi)/(20))=sqrt(12-4sqrt(5)+2sqrt(50-22sqrt(5)))
(10)
csc((7pi)/(20))=sqrt(12-4sqrt(5)-2sqrt(50-22sqrt(5)))
(11)
csc((9pi)/(20))=sqrt(12+4sqrt(5)-2sqrt(50+22sqrt(5)))
(12)

for secx,

sec(pi/(20))=sqrt(12+4sqrt(5)-2sqrt(50+22sqrt(5)))
(13)
sec((3pi)/(20))=sqrt(12-4sqrt(5)-2sqrt(50-22sqrt(5)))
(14)
sec((7pi)/(20))=sqrt(12-4sqrt(5)+2sqrt(50-22sqrt(5)))
(15)
sec((9pi)/(20))=sqrt(12+4sqrt(5)+2sqrt(50+22sqrt(5)))
(16)

for sinx,

sin(pi/(20))=1/4sqrt(8-2sqrt(10+2sqrt(5)))
(17)
sin((3pi)/(20))=1/4sqrt(8-2sqrt(10-2sqrt(5)))
(18)
sin((7pi)/(20))=1/4sqrt(8+2sqrt(10-2sqrt(5)))
(19)
sin((9pi)/(20))=1/4sqrt(8+2sqrt(10+2sqrt(5)))
(20)

and for tanx,

tan(pi/(20))=1+sqrt(5)-sqrt(5+2sqrt(5))
(21)
tan((3pi)/(20))=-1+sqrt(5)-sqrt(5-2sqrt(5))
(22)
tan((7pi)/(20))=-1+sqrt(5)+sqrt(5-2sqrt(5))
(23)
tan((9pi)/(20))=1+sqrt(5)+sqrt(5+2sqrt(5)).
(24)

These can be derived from the half-angle formulas

sin(pi/(20))=sin(1/2·pi/(10))
(25)
=sqrt(1/2(1-cospi/(10)))
(26)
=1/4sqrt(8-2sqrt(10+2sqrt(5)))
(27)
cos(pi/(20))=cos(1/2·pi/(10))
(28)
=sqrt(1/2(1+cospi/(10)))
(29)
=1/4sqrt(8+2sqrt(10+2sqrt(5)))
(30)
tan(pi/(20))=1+sqrt(5)-sqrt(5+2sqrt(5)).
(31)

See also

Trigonometry Angles, TrigonometryTrigonometry Angles--Pi/10

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Trigonometry Angles--Pi/20." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TrigonometryAnglesPi20.html

Subject classifications