Tessellation

A tiling of regular polygons (in two dimensions), polyhedra (three dimensions), or polytopes (n dimensions) is called a tessellation. Tessellations can be specified using a Schläfli symbol.

The breaking up of self-intersecting polygons into simple polygons is also called tessellation (Woo et al. 1999), or more properly, polygon tessellation.

RegularTessellations

There are exactly three regular tessellations composed of regular polygons symmetrically tiling the plane.

SemiregularTessellations

Tessellations of the plane by two or more convex regular polygons such that the same polygons in the same order surround each polygon vertex are called semiregular tessellations, or sometimes Archimedean tessellations. In the plane, there are eight such tessellations, illustrated above (Ghyka 1977, pp. 76-78; Williams 1979, pp. 37-41; Steinhaus 1999, pp. 78-82; Wells 1991, pp. 226-227).

DemiregularTessellations

There are 14 demiregular (or polymorph) tessellations which are orderly compositions of the three regular and eight semiregular tessellations (Critchlow 1970, pp. 62-67; Ghyka 1977, pp. 78-80; Williams 1979, p. 43; Steinhaus 1999, pp. 79 and 81-82).

In three dimensions, a polyhedron which is capable of tessellating space is called a space-filling polyhedron. Examples include the cube, rhombic dodecahedron, and truncated octahedron. There is also a 16-sided space-filler and a convex polyhedron known as the Schmitt-Conway biprism which fills space only aperiodically.

A tessellation of n-dimensional polytopes is called a honeycomb.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.