TOPICS
Search

Symmetric Tensor


A second-tensor rank symmetric tensor is defined as a tensor A for which

 A^(mn)=A^(nm).
(1)

Any tensor can be written as a sum of symmetric and antisymmetric parts

A^(mn)=1/2(A^(mn)+A^(nm))+1/2(A^(mn)-A^(nm))
(2)
=1/2(B_S^(mn)+B_A^(mn)).
(3)

The symmetric part of a tensor is denoted using parentheses as

 T_((a,b))=1/2(T_(ab)+T_(ba))
(4)
 T_((a_1,a_2,...,a_n))=1/(n!)sum_(permutations)T_(a_1a_2...a_n).
(5)

Symbols for the symmetric and antisymmetric parts of tensors can be combined, for example

 T^((ab)c)_([de])=1/4(T^(abc)_(de)+T^(bac)_(de)-T^(abc)_(ed)-T^(bac)_(ed)).
(6)

(Wald 1984, p. 26).

The product of a symmetric and an antisymmetric tensor is 0. This can be seen as follows. Let a^(alphabeta) be antisymmetric, so

 a^(11)=a^(22)=0
(7)
 a^(21)=-a^(12).
(8)

Let b_(alphabeta) be symmetric, so

 b_(12)=b_(21).
(9)

Then

a^(alphabeta)b_(alphabeta)=a^(11)b_(11)+a^(12)b_(12)+a^(21)b_(21)+a^(22)b_(22)
(10)
=0+a^(12)b_(12)-a^(12)b_(12)+0
(11)
=0.
(12)

A symmetric second-tensor rank tensor A_(mn) has scalar invariants

s_1=A_(11)+A_(22)+A_(33)
(13)
s_2=A_(22)A_(33)+A_(33)A_(11)+A_(11)A_(22)-A_(23)^2-A_(31)^2-A_(12)^2.
(14)

See also

Antisymmetric Tensor, Tensor

Explore with Wolfram|Alpha

References

Misner, C. W.; Thorne, K. S.; and Wheeler, J. A. Gravitation. San Francisco, CA: W. H. Freeman, p. 86, 1973.Wald, R. M. General Relativity. Chicago, IL: University of Chicago Press, 1984.

Referenced on Wolfram|Alpha

Symmetric Tensor

Cite this as:

Weisstein, Eric W. "Symmetric Tensor." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SymmetricTensor.html

Subject classifications