Reciprocal Fibonacci Constant

DOWNLOAD Mathematica Notebook

Closed forms are known for the sums of reciprocals of even-indexed Fibonacci numbers

P_F^((e))=sum_(n=1)^(infty)1/(F_(2n))
(1)
=sqrt(5)sum_(n=1)^(infty)(phi^(2n))/(phi^(4n)-1)
(2)
=sqrt(5)sum_(n=1)^(infty)(1/(phi^(2n)-1)-1/(phi^(4n)-1))
(3)
=sqrt(5)[L(phi^(-2))-L(phi^(-4))]
(4)
=(sqrt(5))/(8lnphi)[ln5+2psi_(phi^(-4))(1)-4psi_(phi^(-2))(1)]
(5)
=(sqrt(5))/(4lnphi)[psi_(phi^2)(1-(ipi)/(2lnphi))-psi_(phi^2)(1)+ipi]
(6)
=1.5353705...
(7)

(OEIS A153386; Knopp 1990, Ch. 8, Ex. 114; Paszkowski 1997; Horadam 1988; Finch 2003, p. 358; E. Weisstein, Jan. 1, 2009; Arndt 2012), where phi is the golden ratio, psi_q(z)=psi_q^((0))(z) is a q-polygamma function, and L(beta) is a Lambert series (Borwein and Borwein 1987, pp. 91 and 95) and odd-indexed Fibonacci numbers

P_F^((o))=sum_(n=0)^(infty)1/(F_(2n+1))
(8)
=sqrt(5)sum_(n=0)^(infty)(phi^(2n+1))/(phi^(4n+2)+1)
(9)
=-(sqrt(5))/(4lnphi){pi-i[psi_(phi^2)(1/2-(ipi)/(4lnphi))-psi_(phi^2)(1/2+(ipi)/(4lnphi))]}
(10)
=1/4sqrt(5)theta_2^2(phi^(-2))
(11)
=1/4sqrt(5)[theta_3^2(phi^(-1))-theta_3^2(phi^(-2))]
(12)
=1.824515...
(13)

(OEIS A153387; Landau 1899; Borwein and Borwein 1997, p. 94; E. Weisstein, Jan. 1, 2009; Arndt 2012), where theta_n(q) is a Jacobi elliptic function. Together, these give a closed form for the reciprocal Fibonacci constant of

P_F=sum_(n=1)^(infty)1/(F_n)
(14)
=sqrt(5)sum_(n=1)^(infty)1/(phi^(-n)-(-phi)^n)
(15)
=P_F^((e))+P_F^((o))
(16)
=(sqrt(5))/4[(ln5+2psi_(phi^(-4))(1)-4psi_(phi^(-2))(1))/(2lnphi)+theta_2^2(phi^(-2))]
(17)
=3.35988566...
(18)

(OEIS A079586; Horadam 1988; Griffin 1992; Zhao 1999; Finch 2003, p. 358). The question of the irrationality of P_F was formally raised by Paul Erdős and this sum was proved to be irrational by André-Jeannin (1989).

Borwein and Borwein (1987, pp. 94-101) give a number of beautiful related formulas.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.