TOPICS
Search

Rabinovich-Fabrikant Equation


The Rabinovich-Fabrikant equation is the set of coupled linear ordinary differential equations given by

x^.=y(z-1+x^2)+gammax
(1)
y^.=x(3z+1-x^2)+gammay
(2)
z^.=-2z(alpha+xy)
(3)

(Rabinovich and Fabrikant 1979). The parameters are most commonly taken as gamma=0.87 and alpha=1.1. It has a correlation exponent of 2.19+/-0.01.


Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Grassberger, P. and Procaccia, I. "Measuring the Strangeness of Strange Attractors." Physica D 9, 189-208, 1983.Rabinovich, M. I. and Fabrikant, A. L. "Stochastic Self-Modulation of Waves in Nonequilibrium Media." Sov. Phys. JETP 50, 311-317, 1979.

Referenced on Wolfram|Alpha

Rabinovich-Fabrikant Equation

Cite this as:

Weisstein, Eric W. "Rabinovich-Fabrikant Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Rabinovich-FabrikantEquation.html

Subject classifications