TOPICS
Search

Porter's Constant


Porter's constant is the constant appearing in formulas for the efficiency of the Euclidean algorithm,

C=(6ln2)/(pi^2)[3ln2+4gamma-(24)/(pi^2)zeta^'(2)-2]-1/2
(1)
=(6ln2(48lnA-ln2-4lnpi-2))/(pi^2)-1/2
(2)
=1.4670780794...
(3)

(OEIS A086237), where gamma is the Euler-Mascheroni constant, zeta(z) is the Riemann zeta function, and A is the Glaisher-Kinkelin constant (Knuth 1998, p. 357). The notation C is generally used for this constant (Knuth 1998, p. 357, Finch 2003, pp. 156-157), though other authors use C_P (Ustinov 2010) or T (Dimitrov et al. 2000).

The related constant originally considered by Porter (1975) and Knuth (1976) was denoted A and P, respectively, and defined by

P=(3ln2(48lnA-ln2-4lnpi-2))/(2pi^2)-3/4
(4)
=-0.2582304801....
(5)

Knuth (1976) suggested C be called the Lochs-Porter constant due to the work of Lochs (1961).


See also

Euclidean Algorithm, Norton's Constant

Explore with Wolfram|Alpha

References

Dimitrov, V. S.; Jullien, G. A.; and Miller, W. C. "Complexity and Fast Algorithms for Multiexponentiations." IEEE Trans. Comput. 49, 141-147, 2000.Finch, S. R. "Porter-Hensley Constants." §2.18 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 156-160, 2003.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 113, 2003.Knuth, D. E. "Evaluation of Porter's Constant." Computers Math. Appl. 2, 137-139, 1976.Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.Lochs, G. "Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmässigen Kettenbrüche." Monatsh. f. Math. 65, 27-52, 1961.Porter, J. W. "On a Theorem of Heilbronn." Mathematika 22, 20-28, 1975.Sloane, N. J. A. Sequence A086237 in "The On-Line Encyclopedia of Integer Sequences."Ustinov, A. V. "The Mean Number of Steps in the Euclidean Algorithm with Odd Partial Quotients." Math. Notes 88, 574-584, 2010.

Referenced on Wolfram|Alpha

Porter's Constant

Cite this as:

Weisstein, Eric W. "Porter's Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PortersConstant.html

Subject classifications