TOPICS
Search

Point at Infinity


P is the point on the line AB such that PA^_/PB^_=1. It can also be thought of as the point of intersection of two parallel lines. In 1639, Desargues (1864) became the first to consider the point at infinity (Cremona 1960, p. ix), although Poncelet was the first to systematically employ the point at infinity (Graustein 1930).

A point lying on the line at infinity is a point at infinity. In particular, a point with trilinear coordinates alpha:beta:gamma is a point at infinity if it satisfies

 aalpha+bbeta+cgamma=0.

Points at infinity therefore do not have exact trilinear coordinates.

Kimberling centers X_i are points at infinity for i=30 (the Euler infinity point), 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 674, 680, 681, 688, 690, 696, 698, 700, 702, 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 730, 732, 734, 736, 740, 742, 744, 746, 752, 754, 758, 760, 766, 768, 772, 776, 778, 780, 782, 784, 786, 788, 790, 792, 794, 796, 802, 804, 806, 808, 812, 814, 816, 818, 824, 826, 830, 832, 834, 838, 888, 891, 900, 912, 916, 918, 924, 926, 928, 952, 971, 1154, 1499, 1503, 1510, 1511, 1912, 1938, 1946, 2385, 2386, 2387, 2388, 2389, 2390, 2391, 2392, and 2393 (Weisstein, Oct. 25 and Nov. 20, 2004).

The term point at infinity is also used for complex infinity (Krantz 1999, p. 82).


See also

Circular Point at Infinity, Complex Infinity, Line at Infinity, Plane at Infinity

Explore with Wolfram|Alpha

References

Behnke, H.; Bachmann, F.; Fladt, K.; and Suss, W. (Eds.). Ch. 7 in Fundamentals of Mathematics, Vol. 3: Points at Infinity. Cambridge, MA: MIT Press, 1974.Cremona, L. Elements of Projective Geometry, 3rd ed. New York: Dover, 1960.Desargues, G. "Brouillon-projet d'une atteinte aux événements des recontres d'un cône avec un plan." Œuvres de Desargues, réunies et analysées par M. Pudra, tome 1. Paris, pp.  104, 105, and 205, 1864.Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, p. 38, 1928.Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, p. 30, 1930.Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 82, 1999.Lachlan, R. "Point at Infinity." §9 in An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 5-6, 1893.

Referenced on Wolfram|Alpha

Point at Infinity

Cite this as:

Weisstein, Eric W. "Point at Infinity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PointatInfinity.html

Subject classifications