TOPICS
Search

Petrie Polygon


PetriePolygons

A skew polygon such that every two consecutive sides (but no three) belong to a face of a regular polyhedron. Every regular polyhedron can be orthogonally projected onto a plane in such a way that one Petrie polygon becomes a regular polygon with the remainder of the projection interior to it. The Petrie polygon of the polyhedron {p,q} has h sides, where

 cos^2(pi/h)=cos^2(pi/p)+cos^2(pi/q).

The Petrie polygons shown above correspond to the Platonic solids.


See also

Platonic Solid, Regular Polygon, Regular Polyhedron, Skew Polygon

Explore with Wolfram|Alpha

References

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 135, 1987.Coxeter, H. S. M. "Petrie Polygons." §2.6 in Regular Polytopes, 3rd ed. New York: Dover, pp. 24-25, 1973.

Referenced on Wolfram|Alpha

Petrie Polygon

Cite this as:

Weisstein, Eric W. "Petrie Polygon." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PetriePolygon.html

Subject classifications