Generalizes the secant method of root finding by
using quadratic 3-point interpolation
 |
(1)
|
Then define
and the next iteration is
 |
(5)
|
This method can also be used to find complex zeros
of analytic functions.
Explore with Wolfram|Alpha
References
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical
Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, p. 364, 1992.Referenced on Wolfram|Alpha
Muller's Method
Cite this as:
Weisstein, Eric W. "Muller's Method."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MullersMethod.html
Subject classifications