TOPICS
Search

Minkowski Metric


The Minkowski metric, also called the Minkowski tensor or pseudo-Riemannian metric, is a tensor eta_(alphabeta) whose elements are defined by the matrix

 (eta)_(alphabeta)=[-1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1],
(1)

where the convention c=1 is used, and the indices alpha,beta run over 0, 1, 2, and 3, with x^0=t the time coordinate and (x^1,x^2,x^3) the space coordinates.

The Euclidean metric

 (g)_(alphabeta)=[1 0 0; 0 1 0; 0 0 1],
(2)

gives the line element

ds^2=g_(alphabeta)dx^alphadx^beta
(3)
=(dx^1)^2+(dx^2)^2+(dx^3)^2,
(4)

while the Minkowski metric gives its relativistic generalization, the proper time

dtau^2=eta_(alphabeta)dx^alphadx^beta
(5)
=-(dx^0)^2+(dx^1)^2+(dx^2)^2+(dx^3)^2.
(6)

The Minkowski metric is fundamental in relativity theory, and arises in the definition of the Lorentz transformation as

 Lambda^alpha_gammaLambda^beta_deltaeta_(alphabeta)=eta_(gammadelta),
(7)

where Lambda^alpha_beta is a Lorentz tensor. It also satisfies

 eta^(betadelta)Lambda^gamma_delta=Lambda^(betagamma)
(8)
 eta_(alphagamma)Lambda^(betagamma)=Lambda_alpha^beta
(9)
 Lambda_alpha^beta=eta_(alphagamma)Lambda^(betagamma)=eta_(alphagamma)eta^(betadelta)Lambda^gamma_delta.
(10)

The metric of Minkowski space is diagonal with

 eta_(alphaalpha)=1/(eta_(alphaalpha)),
(11)

and so satisfies

 eta^(betadelta)=eta_(betadelta).
(12)

The necessary and sufficient conditions for a metric g_(munu) to be equivalent to the Minkowski metric eta_(alphabeta) are that the Riemann tensor vanishes everywhere (R^lambda_(munukappa)=0) and that at some point g^(munu) has three positive and one negative eigenvalues.


See also

Euclidean Metric, Line Element, Lorentz Tensor, Lorentz Transformation, Minkowski Space

Explore with Wolfram|Alpha

References

Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: Wiley, p. 38, 1972.

Referenced on Wolfram|Alpha

Minkowski Metric

Cite this as:

Weisstein, Eric W. "Minkowski Metric." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MinkowskiMetric.html

Subject classifications