An inequality which implies the correctness of the Robertson conjecture (Milin 1964). de Branges (1985) proved this conjecture, which led to the proof of the full Bieberbach conjecture.
Milin Conjecture
See also
Bieberbach Conjecture, Robertson ConjectureExplore with Wolfram|Alpha
References
de Branges, L. "A Proof of the Bieberbach Conjecture." Acta Math. 154, 137-152, 1985.Milin, I. M. "The Area Method in the Theory of Univalent Functions." Dokl. Acad. Nauk SSSR 154, 264-267, 1964.Milin, I. M. Univalent Functions and Orthonormal Systems. Providence, RI: Amer. Math. Soc., 1977.Stewart, I. From Here to Infinity: A Guide to Today's Mathematics. Oxford, England: Oxford University Press, p. 165, 1996.Referenced on Wolfram|Alpha
Milin ConjectureCite this as:
Weisstein, Eric W. "Milin Conjecture." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MilinConjecture.html