TOPICS
Search

Mertens Function


MertensFunction

The Mertens function is the summary function

 M(n)=sum_(k=1)^nmu(k),
(1)

where mu(n) is the Möbius function (Mertens 1897; Havil 2003, p. 208). The first few values are 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, ... (OEIS A002321). M(n) is also given by the determinant of the n×n Redheffer matrix.

Values of M(10^n) for n=0, 1, 2, ... are given by 1, -1, 1, 2, -23, -48, 212, 1037, 1928, -222, ... (OEIS A084237; Deléglise and Rivat 1996).

The following table summarizes the first few values of n at which M(n)=k for various k

kOEISn such that M(n)=k
-313, 19, 20, 30, 33, 43, 44, 45, 47, 48, 49, 50, ...
-25, 7, 8, 9, 11, 12, 14, 17, 18, 21, 23, 24, 25, 29, ...
-13, 4, 6, 10, 15, 16, 22, 26, 27, 28, 35, 36, 38, ...
0A0284422, 39, 40, 58, 65, 93, 101, 145, 149, 150, ...
1A1186841, 94, 97, 98, 99, 100, 146, 147, 148, 161, ...
295, 96, 217, 229, 335, 336, 339, 340, 345, 347, 348, ...
3218, 223, 224, 225, 227, 228, 341, 342, 343, 344, 346, ...

An analytic formula for M(x) is not known, although Titchmarsh (1960) showed that if the Riemann hypothesis holds and if there are no multiple Riemann zeta function zeros, then there is a sequence T_k with k<=T_k<=k+1 such that

 M_0(x)=lim_(k->infty)sum_(rho; |gamma|<T_k)(x^rho)/(rhozeta^'(rho))-2 
 +sum_(n=1)^infty((-1)^(n-1))/((2n)!nzeta(2n+1))((2pi)/x)^(2n),
(2)

where zeta(z) is the Riemann zeta function,

 M_0(x)={M(x)-1/2mu(x)   if x in Z^+; M(x)   otherwise,
(3)

and rho=1/2+igamma runs over all nontrivial zeros of the Riemann zeta function (Odlyzko and te Riele 1985).

The Mertens function is related to the number of squarefree integers up to n, which is the sum from 1 to n of the absolute value of mu(k),

 sum_(k=1)^n|mu(k)|∼6/(pi^2)n+O(sqrt(n)).
(4)

The Mertens function also obeys

 sum_(n=1)^xM(x/n)=1
(5)

(Lehman 1960).

Mertens (1897) verified that |M(x)|<=sqrt(x) for x<10000 and conjectured that this inequality holds for all nonnegative x. The statement

 |M(x)|<x^(1/2)
(6)

is therefore known as the Mertens conjecture, although it has since been disproved.

Lehman (1960) gives an algorithm for computing M(x) with O(x^(2/3+epsilon)) operations, while the Lagarias-Odlyzko (1987) algorithm for computing the prime counting function pi(x) can be modified to give M(x) in O(x^(3/5+epsilon)) operations. Deléglise and Rivat 1996) described an elementary method for computing isolated values of M(x) with time complexity O(x^(2/3)(lnlnx)^(1/3)) and space complexity O(x^(1/3)(lnlnx)^(2/3)).


See also

Mertens Conjecture, Möbius Function, Redheffer Matrix, Squarefree

Explore with Wolfram|Alpha

References

Deléglise, M. and Rivat, J. "Computing the Summation of the Möbius Function." Experiment. Math. 5, 291-295, 1996.Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, p. 250, 2004.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 208-210, 2003.Lagarias, J. and Odlyzko, A. "Computing pi(x): An Analytic Method." J. Algorithms 8, 173-191, 1987.Lehman, R. S. "On Liouville's Function." Math. Comput. 14, 311-320, 1960.Lehmer, D. H. Guide to Tables in the Theory of Numbers. Bulletin No. 105. Washington, DC: National Research Council, pp. 7-10, 1941.Mertens, F. "Über einige asymptotische Gesetze der Zahlentheorie." J. reine angew. Math. 77, 46-62, 1874.Mertens, F. "Über eine zahlentheoretische Funktion." Akad. Wiss. Wien Math.-Natur. Kl. Sitzungsber. IIa 106, 761-830, 1897.Odlyzko, A. M. and te Riele, H. J. J. "Disproof of the Mertens Conjecture." J. reine angew. Math. 357, 138-160, 1985.Sloane, N. J. A. Sequences A002321/M0102, A028442, A084237, and A118684 in "The On-Line Encyclopedia of Integer Sequences."Sterneck, R. D. von. "Empirische Untersuchung über den Verlauf der zahlentheoretischer Function sigma(n)=sum_(x=1)^(n)mu(x) im Intervalle von 0 bis 150 000." Sitzungsber. der Kaiserlichen Akademie der Wissenschaften Wien, Math.-Naturwiss. Klasse 2a 106, 835-1024, 1897.Titchmarsh, E. C. The Theory of Functions, 2nd ed. Oxford, England: Oxford University Press, 1960.

Referenced on Wolfram|Alpha

Mertens Function

Cite this as:

Weisstein, Eric W. "Mertens Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MertensFunction.html

Subject classifications