TOPICS
Search

Maximum Absolute Row Sum Norm


The natural norm induced by the L-infty-norm is called the maximum absolute row sum norm and is defined by

 ||A||_infty=max_(i)sum_(j=1)^n|a_(ij)|

for a matrix A. This matrix norm is implemented as Norm[m, Infinity].


See also

L-infty-Norm, Matrix Norm, Maximum Absolute Column Sum Norm, Spectral Norm

Explore with Wolfram|Alpha

References

Horn, R. A. and Johnson, C. R. "Norms for Vectors and Matrices." Ch. 5 in Matrix Analysis. Cambridge, England: Cambridge University Press, 1990.

Referenced on Wolfram|Alpha

Maximum Absolute Row Sum Norm

Cite this as:

Weisstein, Eric W. "Maximum Absolute Row Sum Norm." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MaximumAbsoluteRowSumNorm.html

Subject classifications