where is the gamma function and other details are discussed by Gradshteyn and Ryzhik (2000).
MacRobert's E-Function
See also
Fox H-Function, Kampé de Fériet Function, Meijer G-FunctionExplore with Wolfram|Alpha
References
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "Definition of the E-Function." §5.2 in Higher Transcendental Functions, Vol. 1. New York: Krieger, pp. 203-206, 1981.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 896-903 and 1071-1072, 2000.MacRobert, T. M. "Induction Proofs of the Relations between Certain Asymptotic Expansions and Corresponding Generalised Hypergeometric Series." Proc. Roy. Soc. Edinburgh 58, 1-13, 1937-38.MacRobert, T. M. "Some Formulæ for the -Function." Philos. Mag. 31, 254-260, 1941.Referenced on Wolfram|Alpha
MacRobert's E-FunctionCite this as:
Weisstein, Eric W. "MacRobert's E-Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MacRobertsE-Function.html