TOPICS
Search

Linear Stability


Consider the general system of two first-order ordinary differential equations

x^.=f(x,y)
(1)
y^.=g(x,y).
(2)

Let x_0 and y_0 denote fixed points with x^.=y^.=0, so

f(x_0,y_0)=0
(3)
g(x_0,y_0)=0.
(4)

Then expand about (x_0,y_0) so

deltax^.=f_x(x_0,y_0)deltax+f_y(x_0,y_0)deltay+f_(xy)(x_0,y_0)deltaxdeltay+...
(5)
deltay^.=g_x(x_0,y_0)deltax+g_y(x_0,y_0)deltay+g_(xy)(x_0,y_0)deltaxdeltay+....
(6)

To first-order, this gives

 d/(dt)[deltax; deltay]=[f_x(x_0,y_0) f_y(x_0,y_0); g_x(x_0,y_0) g_y(x_0,y_0)][deltax; deltay],
(7)

where the 2×2 matrix is called the stability matrix.

In general, given an n-dimensional map x^'=T(x), let x_0 be a fixed point, so that

 T(x_0)=x_0.
(8)

Expand about the fixed point,

T(x_0+deltax)=T(x_0)+(partialT)/(partialx)deltax+O(deltax)^2
(9)
=T(x_0)+deltaT,
(10)

so

 deltaT=(partialT)/(partialx)deltax=Adeltax.
(11)

The map can be transformed into the principal axis frame by finding the eigenvectors and eigenvalues of the matrix A

 (A-lambdaI)deltax=0,
(12)

so the determinant

 |A-lambdaI|=0.
(13)

The mapping is

 deltax_(princ)^'=[lambda_1 ... 0; | ... |; 0 ... lambda_n].
(14)

When iterated a large number of times, deltaT_(princ)^'->0 only if R[lambda_i]<0 for all i, but deltaT_(princ)^'->infty if any R[lambda_i]>0. Analysis of the eigenvalues (and eigenvectors) of A therefore characterizes the type of fixed point.


See also

Fixed Point, Lyapunov Function, Nonlinear Stability, Stability Matrix

Explore with Wolfram|Alpha

References

Tabor, M. "Linear Stability Analysis." §1.4 in Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, pp. 20-31, 1989.

Referenced on Wolfram|Alpha

Linear Stability

Cite this as:

Weisstein, Eric W. "Linear Stability." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LinearStability.html

Subject classifications