Let
(1)
 
 
(OEIS A064853 ) be the arc length  of a lemniscate  with 
(OEIS A062539 ; Abramowitz and Stegun 1972; Finch 2003, p. 420), where Gauss's constant , arithmetic-geometric
 mean , Jacobi theta function , complete
 elliptic integral of the first kind , and Carlson elliptic
 integrals . Todd (1975) cites T. Schneider as proving transcendental
 number  in 1937.
The quantity
(OEIS A085565 ; Le Lionnais 1983) is sometimes
known as the first lemniscate constant, while
(OEIS A076390 ), where Gauss's constant , is
 sometimes known as the second lemniscate constant (Todd 1975, Gosper 1976, Lewanowicz
 and Paszowski 1995).
 
See also Gamma Function , 
Lemniscate , 
Lemniscate Case , 
Pseudolemniscate
 Case 
Explore with Wolfram|Alpha 
References Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.  Borwein, J. M. and Borwein, P. B. Pi
 & the AGM: A Study in Analytic Number Theory and Computational Complexity.  Finch, S. R. "Gauss' Lemniscate Constant."
 §6.1 in Mathematical
 Constants.  Gosper, R. W. "A Calculus of Series Rearrangements."
 In Algorithms
 and Complexity: New Directions and Recent Results. Proc. 1976 Carnegie-Mellon Conference  Le
 Lionnais, F. Les
 nombres remarquables.  Levin,
 A. "A Geometric Interpretation of an Infinite Product for the Lemniscate Constants."
 Amer. Math. Monthly  113 , 510-520, 2006. Lewanowicz, S.
 and Paszowski, S. "An Analytic Method for Convergence Acceleration of Certain
 Hypergeometric Series." Math. Comput.  64 , 691-713, 1995. Sloane,
 N. J. A. Sequences  A062539 , A064853 ,
 A076390 , and A085565 
 in "The On-Line Encyclopedia of Integer Sequences." Todd, J.
 "The Lemniscate Constant." Comm. ACM  18 , 14-19 and 462, 1975. Referenced
 on Wolfram|Alpha Lemniscate Constant 
Cite this as: 
Weisstein, Eric W.  "Lemniscate Constant."
From MathWorld https://mathworld.wolfram.com/LemniscateConstant.html 
Subject classifications