KMS Condition

The Kubo-Martin-Schwinger (KMS) condition is a kind of boundary-value condition which naturally emerges in quantum statistical mechanics and related areas.

Given a quantum system B=B(H) with finite dimensional Hilbert space H, define the function tau^t as

 tau^t(A)=e^(itH)Ae^(-itH),
(1)

where i=sqrt(-1) is the imaginary unit and where H=H^* is the Hamiltonian, i.e., the sum of the kinetic energies of all the particles in B plus the potential energy of the particles associated with B. Next, for any real number beta in R, define the thermal equilibrium omega_beta as

 omega_beta(A)=(Tr(e^(-betaH)A))/(Tr(e^(-betaH))),
(2)

where Tr denotes the matrix trace. From tau^t and omega_beta, one can define the so-called equilibrium correlation function F=F_beta where

 F_beta(A,B;t)=omega_beta(Atau^t(B)),
(3)

whereby the KMS boundary condition says that

 F_beta(A,B;t+ibeta)=omega_beta(tau^t(beta)A).
(4)

In particular, this identity relates to the state omega_beta the values of the analytic function F_beta(A,B;z) on the boundary of the strip

 S_beta={z in C:0<I(zsgn(beta))<|beta|},
(5)

where here, I(w) denotes the imaginary part of w in C and sgn(x) denotes the signum function applied to x in R.

In various literature, the KMS boundary condition is stated in sometimes-different contexts. For example, the identity () is sometimes written with respect to integration, yielding

 int_(-infty)^inftyomega_beta(Atau^t(B))f(t-ibeta)dt=int_(-infty)^inftyomega_beta(tau^t(B)A)f(t)dt,
(6)

where here, f(z) is used as shorthand for F_beta(A,B;z). In other literature (e.g., Araki and Miyata 1968), the condition looks different still.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.