See also Enclosing Circle ,
Geometric
Span ,
Minimal Enclosing Circle
Explore with Wolfram|Alpha
References Danzer, L.; Grünbaum, B.; and Klee, V. "Helly's Theorem and its Relatives." In Convexity:
Proceedings, Symposia in Pure Mathematics. Providence RI: Amer. Math. Soc.,
pp. 101-180, 1963. Jung, H. W. E. "Über die
kleinste Kugel, die eine räumliche Figur einschliesst." J. reine angew.
Math. 123 , 241-257, 1901. Jung, H. W. E. "Über
den kleinsten Kreis, der eine ebene Figur einschliesst." J. reine angew.
Math. 137 , 310-313, 1910. Le Lionnais, F. Les
nombres remarquables. Paris: Hermann, p. 28, 1983. Rademacher,
H. and Toeplitz, O. "The Spanning Circle of a Finite Set of Points." §16
in The
Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton,
NJ: Princeton University Press, pp. 103-110, 1957. Wells, D. The
Penguin Dictionary of Curious and Interesting Geometry. London: Penguin,
p. 128, 1991. Referenced on Wolfram|Alpha Jung's Theorem
Cite this as:
Weisstein, Eric W. "Jung's Theorem." From
MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/JungsTheorem.html
Subject classifications