Inverse Oblate Spheroidal Coordinates

InverseOblateSpheroidal

A system of coordinates obtained by inversion of the oblate spheroids and one-sheeted hyperboloids in oblate spheroidal coordinates. The inverse oblate spheroidal coordinates (eta,theta,psi) are given by the transformation equations

x=(acoshetasinthetacospsi)/(cosh^2eta-cos^2theta)
(1)
y=(acoshetasinthetasinpsi)/(cosh^2eta-cos^2theta)
(2)
z=(asinhetacostheta)/(cos^2eta-cos^2theta),
(3)

where eta>=0, theta in [0,pi], and psi in [0,2pi). Surfaces of constant eta are given by the cyclides of rotation

 x^2+y^2+z^2=asqrt((x^2+y^2)/(cosh^2eta)+(z^2)/(sinh^2eta)),
(4)

surfaces of constant theta by the cyclides of rotation

 x^2+y^2+z^2=asqrt((x^2+y^2)/(sin^2theta)-(z^2)/(cos^2theta)),
(5)

and surfaces of constant psi by the half-planes

 tanpsi=y/x.
(6)

The metric coefficients are given by

g_(etaeta)=(a^2(cosh^2eta-sin^2theta))/((cosh^2eta-cos^2theta))
(7)
g_(thetatheta)=(a^2(cosh^2eta-sin^2theta))/((cosh^2eta-cos^2theta))
(8)
g_(psipsi)=(a^2cosh^2etasin^2theta)/((cosh^2eta-cos^2theta)^2).
(9)

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.