TOPICS
Search

Göllnitz's Theorem


Let A(n) denote the number of partitions of n into parts =2,5,11 (mod 12), let B(n) denote the number of partitions of n into distinct parts =2,4,5 (mod 6), and let C(n) denote the number of partitions of n of the form

 n=b_1+b_2+...+b_t,
(1)

where b_i-b_(i+1)>=6, with strict inequality if b_i=0,1 or 3 (mod 6), and b_t!=1,3. Then

 A(n)=B(n)=C(n)
(2)

(Andrews 1986, p. 101).

The values of A(n)=B(n)=C(n) for n=1, 2, ... are 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 9, ... (OEIS A056970). For example, for n=24, there are eight partitions satisfying these conditions, as summarized in the following table.

A(24)=8B(24)=8C(24)=8
17+5+222+224
14+5+520+422+2
14+2+2+2+2+217+5+220+4
11+11+216+819+5
11+5+2+2+2+214+1018+6
5+5+5+5+2+214+8+217+7
5+5+2+2+2+2+2+2+211+8+516+8
2+2+2+2+2+2+2+2+2+2+2+210+8+4+214+8+2

The identity A(n)=B(n) can be established using the identity

sum_(n=0)^(infty)B(n)q^n=product_(n=0)^(infty)(1+q^(6n+2))(1+q^(6n+4))(1+q^(6n+5))
(3)
=(-q^2;q^6)_infty(-q^4;q^6)_infty(-q^5;q^6)_infty
(4)
=product_(n=0)^(infty)((1-q^(12n+4))(1-q^(12n+8))(1-q^(12n+10)))/((1-q^(6n+2))(1-q^(6n+4))(1-q^(6n+5)))
(5)
=((q^4;q^(12))_infty(q^8;q^(12))_infty(q^(10);q^(12))_infty)/((q^2;q^6)_infty(q^4;q^6)_infty(q^5;q^6)_infty)
(6)
=product_(n=0)^(infty)1/((1-q^(12n+2))(1-q^(12n+5))(1-q^(12n+11)))
(7)
=1/((q^2;q^(12))_infty(q^5;q^(12))_infty(q^(11);q^(12))_infty)
(8)
=sum_(n=0)^(infty)A(n)q^n,
(9)

where (q;a)_infty is a q-Pochhammer symbol (Andrews 1986, p. 101). The assertion B(n)=C(n) is significantly more difficult, and no simple proof is known. However, it can be established with the aid of computer algebra and the following refinement of the Göllnitz theorem.

Let B(n,m) denote the number of partitions of n into m distinct parts =2, 4, 5 (mod 6). Let C(n,m) denote the number of partitions of n of the form

 n=b_1+b_2+...+b_n,
(10)

where b_i-b_(i+1)>=6, with strict inequality if b_i=0, 1, 3 (mod 6), where b_s!=1, 3, and m is the number of b_i=2,4,5 (mod 6) plus twice the number of b_i=0,1,3 (mod 6). Then B(n,m)=C(n,m) for each n and m (Göllnitz 1967; Andrews 1986, p. 102).


See also

Göllnitz-Gordon Identities, Schur's Partition Theorem

Explore with Wolfram|Alpha

References

Alladi, K. and Berkovich, A. "A Double Bounded Key Identity for Göllnitz's (BIG) Partition Theorem." 1 Jul 2000. http://arxiv.org/abs/math.CO/0007001.Andrews, G. E. "Physics, Ramanujan, and Computer Algebra." In Computer Algebra. Papers from the International Conference on Computer Algebra as a Tool for Research in Mathematics and Physics Held at New York University, New York, April 5-6, 1984 (Ed. D. Chudnovsky and G. Chudnovsky). New York: Springer-Verlag, pp. 97-109, 1989.Andrews, G. E. "Göllnitz's Theorem." §10.6 in q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., pp. 101-104, 1986.Göllnitz, H. "Partitionen mit Differenzenbedingungen." J. reine angew. Math. 225, 154-190, 1967.Sloane, N. J. A. Sequence A056970 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Göllnitz's Theorem

Cite this as:

Weisstein, Eric W. "Göllnitz's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GoellnitzsTheorem.html

Subject classifications