TOPICS
Search

Gaussian Prime


GaussianPrimes

Gaussian primes are Gaussian integers z=a+bi satisfying one of the following properties.

1. If both a and b are nonzero then, a+bi is a Gaussian prime iff a^2+b^2 is an ordinary prime.

2. If a=0, then bi is a Gaussian prime iff |b| is an ordinary prime and |b|=3 (mod 4).

3. If b=0, then a is a Gaussian prime iff |a| is an ordinary prime and |a|=3 (mod 4).

The above plot of the complex plane shows the Gaussian primes as filled squares.

The primes which are also Gaussian primes are 3, 7, 11, 19, 23, 31, 43, ... (OEIS A002145). The Gaussian primes with |a|,|b|<=5 are given by -5-4i, -5-2i, -5+2i, -5+4i, -4-5i, -4-i, -4+i, -4+5i, -3-2i, -3, -3+2i, -2-5i, -2-3i, -2-i, -2+i, -2+3i, -2+5i, -1-4i, -1-2i, -1-i, -1+i, -1+2i, -1+4i, -3i, 3i, 1-4i, 1-2i, 1-i, 1+i, 1+2i, 1+4i, 2-5i, 2-3i, 2-i, 2+i, 2+3i, 2+5i, 3-2i, 3, 3+2i, 4-5i, 4-i, 4+i, 4+5i, 5-4i, 5-2i, 5+2i, 5+4i.

The numbers of Gaussian primes z with complex modulus |z|<=10^n (where the definition |a+ib|=sqrt(a^2+b^2) has been used) for n=0, 1, ... are 0, 100, 4928, 313752, ... (OEIS A091134).

The cover of Bressoud and Wagon (2000) shows an illustration of the distribution of Gaussian primes in the complex plane.

As of 2009, the largest known Gaussian prime, found in Sep. 2006, is (1+I)^(1203793)-1, whose real and imaginary parts both have 181189 decimal digits and whose squared complex modulus has 362378 digits.


See also

Eisenstein Prime, Gaussian Integer, Moat-Crossing Problem, Prime Number

Explore with Wolfram|Alpha

References

Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.Caldwell, C. "Gaussian Mersenne Norm." http://primes.utm.edu/top20/page.php?id=41.Gethner, E.; Wagon, S.; and Wick, B. "A Stroll Through the Gaussian Primes." Amer. Math. Monthly 105, 327-337, 1998.Guy, R. K. "Gaussian Primes. Eisenstein-Jacobi Primes." §A16 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 33-36, 1994.Hardy, G. H. and Wright, E. M. "Primes in k(i)" and "The Fundamental Theorem of Arithmetic in k(i)." §12.7 and 12.8 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 183-187, 1979.Rademacher, H. Topics in Analytic Number Theory. New York: Springer-Verlag, 1973.Sloane, N. J. A. Sequences A002145/M2624, A091100, and A091134 in "The On-Line Encyclopedia of Integer Sequences."Smith, H. J. "Gaussian Primes." http://www.geocities.com/hjsmithh/GPrimes.html.Wagon, S. "Gaussian Primes." §9.4 in Mathematica in Action. New York: W. H. Freeman, pp. 298-303, 1991.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 85, 1991.Zariski, O. and Samuel, P. Commutative Algebra I. New York: Springer-Verlag, 1958.

Referenced on Wolfram|Alpha

Gaussian Prime

Cite this as:

Weisstein, Eric W. "Gaussian Prime." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaussianPrime.html

Subject classifications